Switched to Vector3 altogether
parent
f0d1039771
commit
51983c30a6
|
|
@ -62,12 +62,10 @@ Unit3 Unit3::Random(boost::mt19937 & rng) {
|
|||
boost::uniform_on_sphere<double> randomDirection(3);
|
||||
// This variate_generator object is required for versions of boost somewhere
|
||||
// around 1.46, instead of drawing directly using boost::uniform_on_sphere(rng).
|
||||
boost::variate_generator<boost::mt19937&, boost::uniform_on_sphere<double> >
|
||||
generator(rng, randomDirection);
|
||||
boost::variate_generator<boost::mt19937&, boost::uniform_on_sphere<double> > generator(
|
||||
rng, randomDirection);
|
||||
vector<double> d = generator();
|
||||
Unit3 result;
|
||||
result.p_ = Point3(d[0], d[1], d[2]);
|
||||
return result;
|
||||
return Unit3(d[0], d[1], d[2]);
|
||||
}
|
||||
|
||||
#ifdef GTSAM_USE_TBB
|
||||
|
|
@ -97,8 +95,8 @@ const Matrix32& Unit3::basis() const {
|
|||
assert(false);
|
||||
|
||||
// Create the two basis vectors
|
||||
Vector3 b1 = p_.vector().cross(axis).normalized();
|
||||
Vector3 b2 = p_.vector().cross(b1).normalized();
|
||||
Vector3 b1 = p_.cross(axis).normalized();
|
||||
Vector3 b2 = p_.cross(b1).normalized();
|
||||
|
||||
// Create the basis matrix
|
||||
B_.reset(Matrix32());
|
||||
|
|
@ -120,7 +118,7 @@ Matrix3 Unit3::skew() const {
|
|||
/* ************************************************************************* */
|
||||
Vector2 Unit3::error(const Unit3& q, OptionalJacobian<2,2> H) const {
|
||||
// 2D error is equal to B'*q, as B is 3x2 matrix and q is 3x1
|
||||
Vector2 xi = basis().transpose() * q.p_.vector();
|
||||
Vector2 xi = basis().transpose() * q.p_;
|
||||
if (H)
|
||||
*H = basis().transpose() * q.basis();
|
||||
return xi;
|
||||
|
|
@ -139,19 +137,16 @@ double Unit3::distance(const Unit3& q, OptionalJacobian<1,2> H) const {
|
|||
/* ************************************************************************* */
|
||||
Unit3 Unit3::retract(const Vector2& v) const {
|
||||
|
||||
// Get the vector form of the point and the basis matrix
|
||||
Vector3 p = p_.vector();
|
||||
|
||||
// Compute the 3D xi_hat vector
|
||||
Vector3 xi_hat = basis() * v;
|
||||
double xi_hat_norm = xi_hat.norm();
|
||||
|
||||
// When v is the so small and approximate as a direction
|
||||
if (xi_hat_norm < 1e-8) {
|
||||
return Unit3(cos(xi_hat_norm) * p + xi_hat);
|
||||
return Unit3(cos(xi_hat_norm) * p_ + xi_hat);
|
||||
}
|
||||
|
||||
Vector3 exp_p_xi_hat = cos(xi_hat_norm) * p
|
||||
Vector3 exp_p_xi_hat = cos(xi_hat_norm) * p_
|
||||
+ sin(xi_hat_norm) * (xi_hat / xi_hat_norm);
|
||||
return Unit3(exp_p_xi_hat);
|
||||
}
|
||||
|
|
@ -159,18 +154,17 @@ Unit3 Unit3::retract(const Vector2& v) const {
|
|||
/* ************************************************************************* */
|
||||
Vector2 Unit3::localCoordinates(const Unit3& y) const {
|
||||
|
||||
Vector3 p = p_.vector(), q = y.unitVector();
|
||||
double dot = p.dot(q);
|
||||
double dot = p_.dot(y.p_);
|
||||
|
||||
// Check for special cases
|
||||
if (std::abs(dot - 1.0) < 1e-16)
|
||||
return Vector2(0, 0);
|
||||
return Vector2(0.0, 0.0);
|
||||
else if (std::abs(dot + 1.0) < 1e-16)
|
||||
return Vector2(M_PI, 0);
|
||||
return Vector2(M_PI, 0.0);
|
||||
else {
|
||||
// no special case
|
||||
double theta = acos(dot);
|
||||
Vector3 result_hat = (theta / sin(theta)) * (q - p * dot);
|
||||
const double theta = acos(dot);
|
||||
Vector3 result_hat = (theta / sin(theta)) * (y.p_ - p_ * dot);
|
||||
return basis().transpose() * result_hat;
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -38,7 +38,7 @@ class GTSAM_EXPORT Unit3 {
|
|||
|
||||
private:
|
||||
|
||||
Point3 p_; ///< The location of the point on the unit sphere
|
||||
Vector3 p_; ///< The location of the point on the unit sphere
|
||||
mutable boost::optional<Matrix32> B_; ///< Cached basis
|
||||
|
||||
public:
|
||||
|
|
@ -57,18 +57,18 @@ public:
|
|||
|
||||
/// Construct from point
|
||||
explicit Unit3(const Point3& p) :
|
||||
p_(p / p.norm()) {
|
||||
p_(p.vector().normalized()) {
|
||||
}
|
||||
|
||||
/// Construct from a vector3
|
||||
explicit Unit3(const Vector3& p) :
|
||||
p_(p / p.norm()) {
|
||||
p_(p.normalized()) {
|
||||
}
|
||||
|
||||
/// Construct from x,y,z
|
||||
Unit3(double x, double y, double z) :
|
||||
p_(x, y, z) {
|
||||
p_ = p_ / p_.norm();
|
||||
p_.normalize();
|
||||
}
|
||||
|
||||
/// Named constructor from Point3 with optional Jacobian
|
||||
|
|
@ -88,7 +88,7 @@ public:
|
|||
|
||||
/// The equals function with tolerance
|
||||
bool equals(const Unit3& s, double tol = 1e-9) const {
|
||||
return p_.equals(s.p_, tol);
|
||||
return equal_with_abs_tol(p_, s.p_, tol);
|
||||
}
|
||||
/// @}
|
||||
|
||||
|
|
@ -106,22 +106,22 @@ public:
|
|||
Matrix3 skew() const;
|
||||
|
||||
/// Return unit-norm Point3
|
||||
const Point3& point3(OptionalJacobian<3, 2> H = boost::none) const {
|
||||
Point3 point3(OptionalJacobian<3, 2> H = boost::none) const {
|
||||
if (H)
|
||||
*H = basis();
|
||||
return Point3(p_);
|
||||
}
|
||||
|
||||
/// Return unit-norm Vector
|
||||
const Vector3& unitVector(boost::optional<Matrix&> H = boost::none) const {
|
||||
if (H)
|
||||
*H = basis();
|
||||
return p_;
|
||||
}
|
||||
|
||||
/// Return unit-norm Vector
|
||||
Vector3 unitVector(boost::optional<Matrix&> H = boost::none) const {
|
||||
if (H)
|
||||
*H = basis();
|
||||
return (p_.vector());
|
||||
}
|
||||
|
||||
/// Return scaled direction as Point3
|
||||
friend Point3 operator*(double s, const Unit3& d) {
|
||||
return s * d.p_;
|
||||
return Point3(s * d.p_);
|
||||
}
|
||||
|
||||
/// Signed, vector-valued error between two directions
|
||||
|
|
|
|||
Loading…
Reference in New Issue