Isolated Snavely example

release/4.3a0
dellaert 2014-10-22 11:23:35 +02:00
parent 439f51ec7f
commit 516bb4b0b1
2 changed files with 94 additions and 57 deletions

View File

@ -0,0 +1,78 @@
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
// http://code.google.com/p/ceres-solver/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: keir@google.com (Keir Mierle)
// sameeragarwal@google.com (Sameer Agarwal)
//
// Some Ceres Snippets copied for testing
#pragma once
#include <gtsam_unstable/nonlinear/ceres_rotation.h>
// Templated pinhole camera model for used with Ceres. The camera is
// parameterized using 9 parameters: 3 for rotation, 3 for translation, 1 for
// focal length and 2 for radial distortion. The principal point is not modeled
// (i.e. it is assumed be located at the image center).
struct SnavelyProjection {
template<typename T>
bool operator()(const T* const camera, const T* const point,
T* predicted) const {
// camera[0,1,2] are the angle-axis rotation.
T p[3];
ceres::AngleAxisRotatePoint(camera, point, p);
// camera[3,4,5] are the translation.
p[0] += camera[3];
p[1] += camera[4];
p[2] += camera[5];
// Compute the center of distortion. The sign change comes from
// the camera model that Noah Snavely's Bundler assumes, whereby
// the camera coordinate system has a negative z axis.
T xp = -p[0] / p[2];
T yp = -p[1] / p[2];
// Apply second and fourth order radial distortion.
const T& l1 = camera[7];
const T& l2 = camera[8];
T r2 = xp * xp + yp * yp;
T distortion = T(1.0) + r2 * (l1 + l2 * r2);
// Compute final projected point position.
const T& focal = camera[6];
predicted[0] = focal * distortion * xp;
predicted[1] = focal * distortion * yp;
return true;
}
};

View File

@ -7,7 +7,7 @@
* See LICENSE for the license information
* -------------------------------1------------------------------------------- */
* -------------------------------------------------------------------------- */
/**
* @file testExpression.cpp
@ -27,7 +27,7 @@
#include <gtsam/base/LieScalar.h>
#include <gtsam_unstable/nonlinear/ceres_autodiff.h>
#include <gtsam_unstable/nonlinear/ceres_rotation.h>
#include <gtsam_unstable/nonlinear/ceres_example.h>
#undef CHECK
#include <CppUnitLite/TestHarness.h>
@ -87,55 +87,6 @@ struct Projective {
}
};
// Templated pinhole camera model for used with Ceres. The camera is
// parameterized using 9 parameters: 3 for rotation, 3 for translation, 1 for
// focal length and 2 for radial distortion. The principal point is not modeled
// (i.e. it is assumed be located at the image center).
struct SnavelyProjection {
template<typename T>
bool operator()(const T* const camera, const T* const point,
T* predicted) const {
// camera[0,1,2] are the angle-axis rotation.
T p[3];
ceres::AngleAxisRotatePoint(camera, point, p);
// camera[3,4,5] are the translation.
p[0] += camera[3];
p[1] += camera[4];
p[2] += camera[5];
// Compute the center of distortion. The sign change comes from
// the camera model that Noah Snavely's Bundler assumes, whereby
// the camera coordinate system has a negative z axis.
T xp = -p[0] / p[2];
T yp = -p[1] / p[2];
// Apply second and fourth order radial distortion.
const T& l1 = camera[7];
const T& l2 = camera[8];
T r2 = xp * xp + yp * yp;
T distortion = T(1.0) + r2 * (l1 + l2 * r2);
// Compute final projected point position.
const T& focal = camera[6];
predicted[0] = focal * distortion * xp;
predicted[1] = focal * distortion * yp;
return true;
}
// Adapt to GTSAM types
Vector2 operator()(const Vector9& P, const Vector3& X) const {
Vector2 x;
if (operator()(P.data(), X.data(), x.data()))
return x;
else
throw std::runtime_error("Snavely fail");
}
};
/* ************************************************************************* */
// Test Ceres AutoDiff
TEST(Expression, AutoDiff) {
@ -171,7 +122,17 @@ TEST(Expression, AutoDiff) {
}
/* ************************************************************************* */
// Test Ceres AutoDiff on Snavely
// Test Ceres AutoDiff on Snavely, defined in ceres_example.h
// Adapt to GTSAM types
Vector2 adapted(const Vector9& P, const Vector3& X) {
SnavelyProjection snavely;
Vector2 x;
if (snavely(P.data(), X.data(), x.data()))
return x;
else
throw std::runtime_error("Snavely fail");
}
TEST(Expression, AutoDiff2) {
using ceres::internal::AutoDiff;
@ -185,14 +146,12 @@ TEST(Expression, AutoDiff2) {
// Apply the mapping, to get image point b_x.
Vector expected = Vector2(2, 1);
Vector2 actual = snavely(P, X);
Vector2 actual = adapted(P, X);
EXPECT(assert_equal(expected,actual,1e-9));
// Get expected derivatives
Matrix E1 = numericalDerivative21<Vector2, Vector9, Vector3>(
SnavelyProjection(), P, X);
Matrix E2 = numericalDerivative22<Vector2, Vector9, Vector3>(
SnavelyProjection(), P, X);
Matrix E1 = numericalDerivative21<Vector2, Vector9, Vector3>(adapted, P, X);
Matrix E2 = numericalDerivative22<Vector2, Vector9, Vector3>(adapted, P, X);
// Get derivatives with AutoDiff
Vector2 actual2;