the ultimate test: smartStereoFactors generalize smartFactors in that they work in the purely monocular case!

release/4.3a0
lcarlone 2016-07-27 23:48:58 -04:00
parent a5138bfb46
commit 50d6532fe1
1 changed files with 101 additions and 0 deletions

View File

@ -487,6 +487,107 @@ TEST( SmartStereoProjectionPoseFactor, body_P_sensor ) {
EXPECT(assert_equal(pose3, result.at<Pose3>(x3))); EXPECT(assert_equal(pose3, result.at<Pose3>(x3)));
} }
/* *************************************************************************/ /* *************************************************************************/
TEST( SmartStereoProjectionPoseFactor, body_P_sensor_monocular ){
// make a realistic calibration matrix
double fov = 60; // degrees
size_t w=640,h=480;
Cal3_S2::shared_ptr K(new Cal3_S2(fov,w,h));
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
Pose3 cameraPose1 = Pose3(Rot3::Ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1)); // body poses
Pose3 cameraPose2 = cameraPose1 * Pose3(Rot3(), Point3(1,0,0));
Pose3 cameraPose3 = cameraPose1 * Pose3(Rot3(), Point3(0,-1,0));
SimpleCamera cam1(cameraPose1, *K); // with camera poses
SimpleCamera cam2(cameraPose2, *K);
SimpleCamera cam3(cameraPose3, *K);
// create arbitrary body_Pose_sensor (transforms from sensor to body)
Pose3 sensor_to_body = Pose3(Rot3::Ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(1, 1, 1)); // Pose3(); //
// These are the poses we want to estimate, from camera measurements
Pose3 bodyPose1 = cameraPose1.compose(sensor_to_body.inverse());
Pose3 bodyPose2 = cameraPose2.compose(sensor_to_body.inverse());
Pose3 bodyPose3 = cameraPose3.compose(sensor_to_body.inverse());
// three landmarks ~5 meters infront of camera
Point3 landmark1(5, 0.5, 1.2);
Point3 landmark2(5, -0.5, 1.2);
Point3 landmark3(5, 0, 3.0);
vector<Point2> measurements_cam1, measurements_cam2, measurements_cam3;
// Project three landmarks into three cameras
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
// Create smart factors
std::vector<Key> views;
views.push_back(x1);
views.push_back(x2);
views.push_back(x3);
// convert measurement to (degenerate) stereoPoint2 (with right pixel being NaN)
vector<StereoPoint2> measurements_cam1_stereo, measurements_cam2_stereo, measurements_cam3_stereo;
for(size_t k=0; k<measurements_cam1.size();k++)
measurements_cam1_stereo.push_back(StereoPoint2(measurements_cam1[k].x() , missing_uR , measurements_cam1[k].y()));
for(size_t k=0; k<measurements_cam2.size();k++)
measurements_cam2_stereo.push_back(StereoPoint2(measurements_cam2[k].x() , missing_uR , measurements_cam2[k].y()));
for(size_t k=0; k<measurements_cam3.size();k++)
measurements_cam3_stereo.push_back(StereoPoint2(measurements_cam3[k].x() , missing_uR , measurements_cam3[k].y()));
SmartStereoProjectionParams params;
params.setRankTolerance(1.0);
params.setDegeneracyMode(gtsam::IGNORE_DEGENERACY);
params.setEnableEPI(false);
Cal3_S2Stereo::shared_ptr Kmono(new Cal3_S2Stereo(fov,w,h,b));
SmartStereoProjectionPoseFactor smartFactor1(model, params, sensor_to_body);
smartFactor1.add(measurements_cam1_stereo, views, Kmono);
SmartStereoProjectionPoseFactor smartFactor2(model, params, sensor_to_body);
smartFactor2.add(measurements_cam2_stereo, views, Kmono);
SmartStereoProjectionPoseFactor smartFactor3(model, params, sensor_to_body);
smartFactor3.add(measurements_cam3_stereo, views, Kmono);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
// Put all factors in factor graph, adding priors
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.push_back(PriorFactor<Pose3>(x1, bodyPose1, noisePrior));
graph.push_back(PriorFactor<Pose3>(x2, bodyPose2, noisePrior));
// Check errors at ground truth poses
Values gtValues;
gtValues.insert(x1, bodyPose1);
gtValues.insert(x2, bodyPose2);
gtValues.insert(x3, bodyPose3);
double actualError = graph.error(gtValues);
double expectedError = 0.0;
DOUBLES_EQUAL(expectedError, actualError, 1e-7)
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/100, 0., -M_PI/100), gtsam::Point3(0.1,0.1,0.1));
Values values;
values.insert(x1, bodyPose1);
values.insert(x2, bodyPose2);
// initialize third pose with some noise, we expect it to move back to original pose3
values.insert(x3, bodyPose3*noise_pose);
LevenbergMarquardtParams lmParams;
Values result;
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
result = optimizer.optimize();
EXPECT(assert_equal(bodyPose3,result.at<Pose3>(x3)));
}
/* *************************************************************************/
TEST( SmartStereoProjectionPoseFactor, jacobianSVD ) { TEST( SmartStereoProjectionPoseFactor, jacobianSVD ) {
vector<Key> views; vector<Key> views;