Got rid of HBN::errorTree. Weird semantics and not used unless in regression tests.
parent
3d55fe0d37
commit
50809001e1
|
@ -194,40 +194,6 @@ HybridValues HybridBayesNet::sample() const {
|
|||
return sample(&kRandomNumberGenerator);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
AlgebraicDecisionTree<Key> HybridBayesNet::errorTree(
|
||||
const VectorValues &continuousValues) const {
|
||||
AlgebraicDecisionTree<Key> result(0.0);
|
||||
|
||||
// Iterate over each conditional.
|
||||
for (auto &&conditional : *this) {
|
||||
if (auto gm = conditional->asHybrid()) {
|
||||
// If conditional is hybrid, compute error for all assignments.
|
||||
result = result + gm->errorTree(continuousValues);
|
||||
|
||||
} else if (auto gc = conditional->asGaussian()) {
|
||||
// If continuous, get the error and add it to the result
|
||||
double error = gc->error(continuousValues);
|
||||
// Add the computed error to every leaf of the result tree.
|
||||
result = result.apply(
|
||||
[error](double leaf_value) { return leaf_value + error; });
|
||||
|
||||
} else if (auto dc = conditional->asDiscrete()) {
|
||||
// If discrete, add the discrete error in the right branch
|
||||
if (result.nrLeaves() == 1) {
|
||||
result = dc->errorTree();
|
||||
} else {
|
||||
result = result.apply(
|
||||
[dc](const Assignment<Key> &assignment, double leaf_value) {
|
||||
return leaf_value + dc->error(DiscreteValues(assignment));
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
AlgebraicDecisionTree<Key> HybridBayesNet::logDiscretePosteriorPrime(
|
||||
const VectorValues &continuousValues) const {
|
||||
|
|
|
@ -210,16 +210,6 @@ class GTSAM_EXPORT HybridBayesNet : public BayesNet<HybridConditional> {
|
|||
*/
|
||||
HybridBayesNet prune(size_t maxNrLeaves) const;
|
||||
|
||||
/**
|
||||
* @brief Compute conditional error for each discrete assignment,
|
||||
* and return as a tree.
|
||||
*
|
||||
* @param continuousValues Continuous values at which to compute the error.
|
||||
* @return AlgebraicDecisionTree<Key>
|
||||
*/
|
||||
AlgebraicDecisionTree<Key> errorTree(
|
||||
const VectorValues &continuousValues) const;
|
||||
|
||||
/**
|
||||
* @brief Error method using HybridValues which returns specific error for
|
||||
* assignment.
|
||||
|
|
|
@ -95,12 +95,6 @@ TEST(HybridBayesNet, EvaluatePureDiscrete) {
|
|||
EXPECT(assert_equal(bayesNet, bayesNet.prune(2)));
|
||||
EXPECT_LONGS_EQUAL(1, bayesNet.prune(1).at(0)->size());
|
||||
|
||||
// errorTree
|
||||
AlgebraicDecisionTree<Key> actual = bayesNet.errorTree({});
|
||||
AlgebraicDecisionTree<Key> expectedErrorTree(
|
||||
{Asia}, std::vector<double>{-log(0.4), -log(0.6)});
|
||||
EXPECT(assert_equal(expectedErrorTree, actual));
|
||||
|
||||
// error
|
||||
EXPECT_DOUBLES_EQUAL(-log(0.4), bayesNet.error(zero), 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(-log(0.6), bayesNet.error(one), 1e-9);
|
||||
|
@ -127,20 +121,73 @@ TEST(HybridBayesNet, EvaluatePureDiscrete) {
|
|||
/* ****************************************************************************/
|
||||
// Test creation of a tiny hybrid Bayes net.
|
||||
TEST(HybridBayesNet, Tiny) {
|
||||
auto bn = tiny::createHybridBayesNet();
|
||||
EXPECT_LONGS_EQUAL(3, bn.size());
|
||||
auto bayesNet = tiny::createHybridBayesNet(); // P(z|x,mode)P(x)P(mode)
|
||||
EXPECT_LONGS_EQUAL(3, bayesNet.size());
|
||||
|
||||
const VectorValues vv{{Z(0), Vector1(5.0)}, {X(0), Vector1(5.0)}};
|
||||
auto fg = bn.toFactorGraph(vv);
|
||||
EXPECT_LONGS_EQUAL(3, fg.size());
|
||||
HybridValues zero{vv, {{M(0), 0}}}, one{vv, {{M(0), 1}}};
|
||||
|
||||
// Check that the ratio of probPrime to evaluate is the same for all modes.
|
||||
std::vector<double> ratio(2);
|
||||
for (size_t mode : {0, 1}) {
|
||||
const HybridValues hv{vv, {{M(0), mode}}};
|
||||
ratio[mode] = std::exp(-fg.error(hv)) / bn.evaluate(hv);
|
||||
}
|
||||
EXPECT_DOUBLES_EQUAL(ratio[0], ratio[1], 1e-8);
|
||||
// choose
|
||||
HybridGaussianConditional::shared_ptr hgc = bayesNet.at(0)->asHybrid();
|
||||
GaussianBayesNet chosen;
|
||||
chosen.push_back(hgc->choose(zero.discrete()));
|
||||
chosen.push_back(bayesNet.at(1)->asGaussian());
|
||||
EXPECT(assert_equal(chosen, bayesNet.choose(zero.discrete()), 1e-9));
|
||||
|
||||
// logProbability
|
||||
const double logP0 = chosen.logProbability(vv) + log(0.4); // 0.4 is prior
|
||||
const double logP1 = bayesNet.choose(one.discrete()).logProbability(vv) + log(0.6); // 0.6 is prior
|
||||
EXPECT_DOUBLES_EQUAL(logP0, bayesNet.logProbability(zero), 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(logP1, bayesNet.logProbability(one), 1e-9);
|
||||
|
||||
// evaluate
|
||||
EXPECT_DOUBLES_EQUAL(exp(logP0), bayesNet.evaluate(zero), 1e-9);
|
||||
|
||||
// optimize
|
||||
EXPECT(assert_equal(one, bayesNet.optimize()));
|
||||
EXPECT(assert_equal(chosen.optimize(), bayesNet.optimize(zero.discrete())));
|
||||
|
||||
// sample
|
||||
std::mt19937_64 rng(42);
|
||||
EXPECT(assert_equal({{M(0), 1}}, bayesNet.sample(&rng).discrete()));
|
||||
|
||||
// prune
|
||||
auto pruned = bayesNet.prune(1);
|
||||
EXPECT_LONGS_EQUAL(1, pruned.at(0)->asHybrid()->nrComponents());
|
||||
EXPECT(!pruned.equals(bayesNet));
|
||||
|
||||
// // error
|
||||
// EXPECT_DOUBLES_EQUAL(-log(0.4), bayesNet.error(zero), 1e-9);
|
||||
// EXPECT_DOUBLES_EQUAL(-log(0.6), bayesNet.error(one), 1e-9);
|
||||
|
||||
// logDiscretePosteriorPrime, TODO: useless as -errorTree?
|
||||
AlgebraicDecisionTree<Key> expected(M(0), logP0, logP1);
|
||||
EXPECT(assert_equal(expected, bayesNet.logDiscretePosteriorPrime(vv)));
|
||||
|
||||
// // logProbability
|
||||
// EXPECT_DOUBLES_EQUAL(log(0.4), bayesNet.logProbability(zero), 1e-9);
|
||||
// EXPECT_DOUBLES_EQUAL(log(0.6), bayesNet.logProbability(one), 1e-9);
|
||||
|
||||
// // discretePosterior
|
||||
// AlgebraicDecisionTree<Key> expectedPosterior({Asia},
|
||||
// std::vector<double>{0.4,
|
||||
// 0.6});
|
||||
// EXPECT(assert_equal(expectedPosterior, bayesNet.discretePosterior({})));
|
||||
|
||||
// // toFactorGraph
|
||||
// HybridGaussianFactorGraph expectedFG{};
|
||||
|
||||
// auto fg = bayesNet.toFactorGraph(vv);
|
||||
// EXPECT_LONGS_EQUAL(3, fg.size());
|
||||
// EXPECT(assert_equal(expectedFG, fg));
|
||||
|
||||
// // Check that the ratio of probPrime to evaluate is the same for all modes.
|
||||
// std::vector<double> ratio(2);
|
||||
// ratio[0] = std::exp(-fg.error(zero)) / bayesNet.evaluate(zero);
|
||||
// ratio[0] = std::exp(-fg.error(one)) / bayesNet.evaluate(one);
|
||||
// EXPECT_DOUBLES_EQUAL(ratio[0], ratio[1], 1e-8);
|
||||
|
||||
// TODO: better test: check if discretePosteriors agree !
|
||||
}
|
||||
|
||||
/* ****************************************************************************/
|
||||
|
@ -174,21 +221,6 @@ TEST(HybridBayesNet, evaluateHybrid) {
|
|||
bayesNet.evaluate(values), 1e-9);
|
||||
}
|
||||
|
||||
/* ****************************************************************************/
|
||||
// Test error for a hybrid Bayes net P(X0|X1) P(X1|Asia) P(Asia).
|
||||
TEST(HybridBayesNet, Error) {
|
||||
using namespace different_sigmas;
|
||||
|
||||
AlgebraicDecisionTree<Key> actual = bayesNet.errorTree(values.continuous());
|
||||
|
||||
// Regression.
|
||||
// Manually added all the error values from the 3 conditional types.
|
||||
AlgebraicDecisionTree<Key> expected(
|
||||
{Asia}, std::vector<double>{2.33005033585, 5.38619084965});
|
||||
|
||||
EXPECT(assert_equal(expected, actual));
|
||||
}
|
||||
|
||||
/* ****************************************************************************/
|
||||
// Test choosing an assignment of conditionals
|
||||
TEST(HybridBayesNet, Choose) {
|
||||
|
|
|
@ -357,16 +357,9 @@ TEST(HybridGaussianFactor, DifferentCovariancesFG) {
|
|||
cv.insert(X(0), Vector1(0.0));
|
||||
cv.insert(X(1), Vector1(0.0));
|
||||
|
||||
// Check that the error values at the MLE point μ.
|
||||
AlgebraicDecisionTree<Key> errorTree = hbn->errorTree(cv);
|
||||
|
||||
DiscreteValues dv0{{M(1), 0}};
|
||||
DiscreteValues dv1{{M(1), 1}};
|
||||
|
||||
// regression
|
||||
EXPECT_DOUBLES_EQUAL(9.90348755254, errorTree(dv0), 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(0.69314718056, errorTree(dv1), 1e-9);
|
||||
|
||||
DiscreteConditional expected_m1(m1, "0.5/0.5");
|
||||
DiscreteConditional actual_m1 = *(hbn->at(2)->asDiscrete());
|
||||
|
||||
|
|
|
@ -994,16 +994,9 @@ TEST(HybridNonlinearFactorGraph, DifferentCovariances) {
|
|||
cv.insert(X(0), Vector1(0.0));
|
||||
cv.insert(X(1), Vector1(0.0));
|
||||
|
||||
// Check that the error values at the MLE point μ.
|
||||
AlgebraicDecisionTree<Key> errorTree = hbn->errorTree(cv);
|
||||
|
||||
DiscreteValues dv0{{M(1), 0}};
|
||||
DiscreteValues dv1{{M(1), 1}};
|
||||
|
||||
// regression
|
||||
EXPECT_DOUBLES_EQUAL(9.90348755254, errorTree(dv0), 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(0.69314718056, errorTree(dv1), 1e-9);
|
||||
|
||||
DiscreteConditional expected_m1(m1, "0.5/0.5");
|
||||
DiscreteConditional actual_m1 = *(hbn->at(2)->asDiscrete());
|
||||
|
||||
|
|
Loading…
Reference in New Issue