Merge pull request #1293 from borglab/hybrid/improved-prune

Improved BayesTree pruning
release/4.3a0
Varun Agrawal 2022-10-07 21:26:07 -04:00 committed by GitHub
commit 4f6e4e7242
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
20 changed files with 288 additions and 143 deletions

View File

@ -11,15 +11,17 @@
/**
* @file Assignment.h
* @brief An assignment from labels to a discrete value index (size_t)
* @brief An assignment from labels to a discrete value index (size_t)
* @author Frank Dellaert
* @date Feb 5, 2012
*/
#pragma once
#include <functional>
#include <iostream>
#include <map>
#include <sstream>
#include <utility>
#include <vector>
@ -32,13 +34,30 @@ namespace gtsam {
*/
template <class L>
class Assignment : public std::map<L, size_t> {
/**
* @brief Default method used by `labelFormatter` or `valueFormatter` when
* printing.
*
* @param x The value passed to format.
* @return std::string
*/
static std::string DefaultFormatter(const L& x) {
std::stringstream ss;
ss << x;
return ss.str();
}
public:
using std::map<L, size_t>::operator=;
void print(const std::string& s = "Assignment: ") const {
void print(const std::string& s = "Assignment: ",
const std::function<std::string(L)>& labelFormatter =
&DefaultFormatter) const {
std::cout << s << ": ";
for (const typename Assignment::value_type& keyValue : *this)
std::cout << "(" << keyValue.first << ", " << keyValue.second << ")";
for (const typename Assignment::value_type& keyValue : *this) {
std::cout << "(" << labelFormatter(keyValue.first) << ", "
<< keyValue.second << ")";
}
std::cout << std::endl;
}

View File

@ -119,11 +119,12 @@ void GaussianMixture::print(const std::string &s,
"", [&](Key k) { return formatter(k); },
[&](const GaussianConditional::shared_ptr &gf) -> std::string {
RedirectCout rd;
if (gf && !gf->empty())
if (gf && !gf->empty()) {
gf->print("", formatter);
else
return {"nullptr"};
return rd.str();
return rd.str();
} else {
return "nullptr";
}
});
}

View File

@ -31,8 +31,32 @@ static std::set<DiscreteKey> DiscreteKeysAsSet(const DiscreteKeys &dkeys) {
}
/* ************************************************************************* */
HybridBayesNet HybridBayesNet::prune(
const DecisionTreeFactor::shared_ptr &discreteFactor) const {
DecisionTreeFactor::shared_ptr HybridBayesNet::discreteConditionals() const {
AlgebraicDecisionTree<Key> decisionTree;
// The canonical decision tree factor which will get the discrete conditionals
// added to it.
DecisionTreeFactor dtFactor;
for (size_t i = 0; i < this->size(); i++) {
HybridConditional::shared_ptr conditional = this->at(i);
if (conditional->isDiscrete()) {
// Convert to a DecisionTreeFactor and add it to the main factor.
DecisionTreeFactor f(*conditional->asDiscreteConditional());
dtFactor = dtFactor * f;
}
}
return boost::make_shared<DecisionTreeFactor>(dtFactor);
}
/* ************************************************************************* */
HybridBayesNet HybridBayesNet::prune(size_t maxNrLeaves) const {
// Get the decision tree of only the discrete keys
auto discreteConditionals = this->discreteConditionals();
const DecisionTreeFactor::shared_ptr discreteFactor =
boost::make_shared<DecisionTreeFactor>(
discreteConditionals->prune(maxNrLeaves));
/* To Prune, we visitWith every leaf in the GaussianMixture.
* For each leaf, using the assignment we can check the discrete decision tree
* for 0.0 probability, then just set the leaf to a nullptr.

View File

@ -73,6 +73,8 @@ class GTSAM_EXPORT HybridBayesNet : public BayesNet<HybridConditional> {
HybridConditional(boost::make_shared<DiscreteConditional>(key, table)));
}
using Base::push_back;
/// Get a specific Gaussian mixture by index `i`.
GaussianMixture::shared_ptr atMixture(size_t i) const;
@ -109,9 +111,17 @@ class GTSAM_EXPORT HybridBayesNet : public BayesNet<HybridConditional> {
*/
VectorValues optimize(const DiscreteValues &assignment) const;
/// Prune the Hybrid Bayes Net given the discrete decision tree.
HybridBayesNet prune(
const DecisionTreeFactor::shared_ptr &discreteFactor) const;
protected:
/**
* @brief Get all the discrete conditionals as a decision tree factor.
*
* @return DecisionTreeFactor::shared_ptr
*/
DecisionTreeFactor::shared_ptr discreteConditionals() const;
public:
/// Prune the Hybrid Bayes Net such that we have at most maxNrLeaves leaves.
HybridBayesNet prune(size_t maxNrLeaves) const;
/// @}

View File

@ -89,12 +89,12 @@ struct HybridAssignmentData {
gaussianbayesTree_(gbt) {}
/**
* @brief A function used during tree traversal that operators on each node
* @brief A function used during tree traversal that operates on each node
* before visiting the node's children.
*
* @param node The current node being visited.
* @param parentData The HybridAssignmentData from the parent node.
* @return HybridAssignmentData
* @return HybridAssignmentData which is passed to the children.
*/
static HybridAssignmentData AssignmentPreOrderVisitor(
const HybridBayesTree::sharedNode& node,
@ -144,4 +144,61 @@ VectorValues HybridBayesTree::optimize(const DiscreteValues& assignment) const {
return result;
}
/* ************************************************************************* */
void HybridBayesTree::prune(const size_t maxNrLeaves) {
auto decisionTree = boost::dynamic_pointer_cast<DecisionTreeFactor>(
this->roots_.at(0)->conditional()->inner());
DecisionTreeFactor prunedDiscreteFactor = decisionTree->prune(maxNrLeaves);
decisionTree->root_ = prunedDiscreteFactor.root_;
/// Helper struct for pruning the hybrid bayes tree.
struct HybridPrunerData {
/// The discrete decision tree after pruning.
DecisionTreeFactor prunedDiscreteFactor;
HybridPrunerData(const DecisionTreeFactor& prunedDiscreteFactor,
const HybridBayesTree::sharedNode& parentClique)
: prunedDiscreteFactor(prunedDiscreteFactor) {}
/**
* @brief A function used during tree traversal that operates on each node
* before visiting the node's children.
*
* @param node The current node being visited.
* @param parentData The data from the parent node.
* @return HybridPrunerData which is passed to the children.
*/
static HybridPrunerData AssignmentPreOrderVisitor(
const HybridBayesTree::sharedNode& clique,
HybridPrunerData& parentData) {
// Get the conditional
HybridConditional::shared_ptr conditional = clique->conditional();
// If conditional is hybrid, we prune it.
if (conditional->isHybrid()) {
auto gaussianMixture = conditional->asMixture();
// Check if the number of discrete keys match,
// else we get an assignment error.
// TODO(Varun) Update prune method to handle assignment subset?
if (gaussianMixture->discreteKeys() ==
parentData.prunedDiscreteFactor.discreteKeys()) {
gaussianMixture->prune(parentData.prunedDiscreteFactor);
}
}
return parentData;
}
};
HybridPrunerData rootData(prunedDiscreteFactor, 0);
{
treeTraversal::no_op visitorPost;
// Limits OpenMP threads since we're mixing TBB and OpenMP
TbbOpenMPMixedScope threadLimiter;
treeTraversal::DepthFirstForestParallel(
*this, rootData, HybridPrunerData::AssignmentPreOrderVisitor,
visitorPost);
}
}
} // namespace gtsam

View File

@ -88,6 +88,13 @@ class GTSAM_EXPORT HybridBayesTree : public BayesTree<HybridBayesTreeClique> {
*/
VectorValues optimize(const DiscreteValues& assignment) const;
/**
* @brief Prune the underlying Bayes tree.
*
* @param maxNumberLeaves The max number of leaf nodes to keep.
*/
void prune(const size_t maxNumberLeaves);
/// @}
private:

View File

@ -34,8 +34,6 @@
namespace gtsam {
class HybridGaussianFactorGraph;
/**
* Hybrid Conditional Density
*

View File

@ -135,6 +135,28 @@ class HybridFactorGraph : public FactorGraph<HybridFactor> {
push_hybrid(p);
}
}
/// Get all the discrete keys in the factor graph.
const KeySet discreteKeys() const {
KeySet discrete_keys;
for (auto& factor : factors_) {
for (const DiscreteKey& k : factor->discreteKeys()) {
discrete_keys.insert(k.first);
}
}
return discrete_keys;
}
/// Get all the continuous keys in the factor graph.
const KeySet continuousKeys() const {
KeySet keys;
for (auto& factor : factors_) {
for (const Key& key : factor->continuousKeys()) {
keys.insert(key);
}
}
return keys;
}
};
} // namespace gtsam

View File

@ -96,8 +96,12 @@ GaussianMixtureFactor::Sum sumFrontals(
}
} else if (f->isContinuous()) {
deferredFactors.push_back(
boost::dynamic_pointer_cast<HybridGaussianFactor>(f)->inner());
if (auto gf = boost::dynamic_pointer_cast<HybridGaussianFactor>(f)) {
deferredFactors.push_back(gf->inner());
}
if (auto cg = boost::dynamic_pointer_cast<HybridConditional>(f)) {
deferredFactors.push_back(cg->asGaussian());
}
} else if (f->isDiscrete()) {
// Don't do anything for discrete-only factors
@ -404,31 +408,9 @@ void HybridGaussianFactorGraph::add(DecisionTreeFactor::shared_ptr factor) {
FactorGraph::add(boost::make_shared<HybridDiscreteFactor>(factor));
}
/* ************************************************************************ */
const KeySet HybridGaussianFactorGraph::getDiscreteKeys() const {
KeySet discrete_keys;
for (auto &factor : factors_) {
for (const DiscreteKey &k : factor->discreteKeys()) {
discrete_keys.insert(k.first);
}
}
return discrete_keys;
}
/* ************************************************************************ */
const KeySet HybridGaussianFactorGraph::getContinuousKeys() const {
KeySet keys;
for (auto &factor : factors_) {
for (const Key &key : factor->continuousKeys()) {
keys.insert(key);
}
}
return keys;
}
/* ************************************************************************ */
const Ordering HybridGaussianFactorGraph::getHybridOrdering() const {
KeySet discrete_keys = getDiscreteKeys();
KeySet discrete_keys = discreteKeys();
for (auto &factor : factors_) {
for (const DiscreteKey &k : factor->discreteKeys()) {
discrete_keys.insert(k.first);

View File

@ -161,12 +161,6 @@ class GTSAM_EXPORT HybridGaussianFactorGraph
}
}
/// Get all the discrete keys in the factor graph.
const KeySet getDiscreteKeys() const;
/// Get all the continuous keys in the factor graph.
const KeySet getContinuousKeys() const;
/**
* @brief Return a Colamd constrained ordering where the discrete keys are
* eliminated after the continuous keys.

View File

@ -14,9 +14,10 @@
* @date March 31, 2022
* @author Fan Jiang
* @author Frank Dellaert
* @author Richard Roberts
* @author Varun Agrawal
*/
#include <gtsam/base/treeTraversal-inst.h>
#include <gtsam/hybrid/HybridBayesTree.h>
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
#include <gtsam/hybrid/HybridGaussianISAM.h>
@ -41,6 +42,7 @@ HybridGaussianISAM::HybridGaussianISAM(const HybridBayesTree& bayesTree)
void HybridGaussianISAM::updateInternal(
const HybridGaussianFactorGraph& newFactors,
HybridBayesTree::Cliques* orphans,
const boost::optional<size_t>& maxNrLeaves,
const boost::optional<Ordering>& ordering,
const HybridBayesTree::Eliminate& function) {
// Remove the contaminated part of the Bayes tree
@ -60,23 +62,24 @@ void HybridGaussianISAM::updateInternal(
for (const sharedClique& orphan : *orphans)
factors += boost::make_shared<BayesTreeOrphanWrapper<Node> >(orphan);
KeySet allDiscrete;
for (auto& factor : factors) {
for (auto& k : factor->discreteKeys()) {
allDiscrete.insert(k.first);
}
}
// Get all the discrete keys from the factors
KeySet allDiscrete = factors.discreteKeys();
// Create KeyVector with continuous keys followed by discrete keys.
KeyVector newKeysDiscreteLast;
// Insert continuous keys first.
for (auto& k : newFactorKeys) {
if (!allDiscrete.exists(k)) {
newKeysDiscreteLast.push_back(k);
}
}
// Insert discrete keys at the end
std::copy(allDiscrete.begin(), allDiscrete.end(),
std::back_inserter(newKeysDiscreteLast));
// Get an ordering where the new keys are eliminated last
const VariableIndex index(factors);
Ordering elimination_ordering;
if (ordering) {
elimination_ordering = *ordering;
@ -91,6 +94,10 @@ void HybridGaussianISAM::updateInternal(
HybridBayesTree::shared_ptr bayesTree =
factors.eliminateMultifrontal(elimination_ordering, function, index);
if (maxNrLeaves) {
bayesTree->prune(*maxNrLeaves);
}
// Re-add into Bayes tree data structures
this->roots_.insert(this->roots_.end(), bayesTree->roots().begin(),
bayesTree->roots().end());
@ -99,61 +106,11 @@ void HybridGaussianISAM::updateInternal(
/* ************************************************************************* */
void HybridGaussianISAM::update(const HybridGaussianFactorGraph& newFactors,
const boost::optional<size_t>& maxNrLeaves,
const boost::optional<Ordering>& ordering,
const HybridBayesTree::Eliminate& function) {
Cliques orphans;
this->updateInternal(newFactors, &orphans, ordering, function);
}
/* ************************************************************************* */
/**
* @brief Check if `b` is a subset of `a`.
* Non-const since they need to be sorted.
*
* @param a KeyVector
* @param b KeyVector
* @return True if the keys of b is a subset of a, else false.
*/
bool IsSubset(KeyVector a, KeyVector b) {
std::sort(a.begin(), a.end());
std::sort(b.begin(), b.end());
return std::includes(a.begin(), a.end(), b.begin(), b.end());
}
/* ************************************************************************* */
void HybridGaussianISAM::prune(const Key& root, const size_t maxNrLeaves) {
auto decisionTree = boost::dynamic_pointer_cast<DecisionTreeFactor>(
this->clique(root)->conditional()->inner());
DecisionTreeFactor prunedDiscreteFactor = decisionTree->prune(maxNrLeaves);
decisionTree->root_ = prunedDiscreteFactor.root_;
std::vector<gtsam::Key> prunedKeys;
for (auto&& clique : nodes()) {
// The cliques can be repeated for each frontal so we record it in
// prunedKeys and check if we have already pruned a particular clique.
if (std::find(prunedKeys.begin(), prunedKeys.end(), clique.first) !=
prunedKeys.end()) {
continue;
}
// Add all the keys of the current clique to be pruned to prunedKeys
for (auto&& key : clique.second->conditional()->frontals()) {
prunedKeys.push_back(key);
}
// Convert parents() to a KeyVector for comparison
KeyVector parents;
for (auto&& parent : clique.second->conditional()->parents()) {
parents.push_back(parent);
}
if (IsSubset(parents, decisionTree->keys())) {
auto gaussianMixture = boost::dynamic_pointer_cast<GaussianMixture>(
clique.second->conditional()->inner());
gaussianMixture->prune(prunedDiscreteFactor);
}
}
this->updateInternal(newFactors, &orphans, maxNrLeaves, ordering, function);
}
} // namespace gtsam

View File

@ -48,6 +48,7 @@ class GTSAM_EXPORT HybridGaussianISAM : public ISAM<HybridBayesTree> {
void updateInternal(
const HybridGaussianFactorGraph& newFactors,
HybridBayesTree::Cliques* orphans,
const boost::optional<size_t>& maxNrLeaves = boost::none,
const boost::optional<Ordering>& ordering = boost::none,
const HybridBayesTree::Eliminate& function =
HybridBayesTree::EliminationTraitsType::DefaultEliminate);
@ -57,20 +58,15 @@ class GTSAM_EXPORT HybridGaussianISAM : public ISAM<HybridBayesTree> {
* @brief Perform update step with new factors.
*
* @param newFactors Factor graph of new factors to add and eliminate.
* @param maxNrLeaves The maximum number of leaves to keep after pruning.
* @param ordering Custom elimination ordering.
* @param function Elimination function.
*/
void update(const HybridGaussianFactorGraph& newFactors,
const boost::optional<size_t>& maxNrLeaves = boost::none,
const boost::optional<Ordering>& ordering = boost::none,
const HybridBayesTree::Eliminate& function =
HybridBayesTree::EliminationTraitsType::DefaultEliminate);
/**
* @brief Prune the underlying Bayes tree.
*
* @param root The root key in the discrete conditional decision tree.
* @param maxNumberLeaves
*/
void prune(const Key& root, const size_t maxNumberLeaves);
};
/// traits

View File

@ -33,7 +33,9 @@ void HybridNonlinearISAM::saveGraph(const string& s,
/* ************************************************************************* */
void HybridNonlinearISAM::update(const HybridNonlinearFactorGraph& newFactors,
const Values& initialValues) {
const Values& initialValues,
const boost::optional<size_t>& maxNrLeaves,
const boost::optional<Ordering>& ordering) {
if (newFactors.size() > 0) {
// Reorder and relinearize every reorderInterval updates
if (reorderInterval_ > 0 && ++reorderCounter_ >= reorderInterval_) {
@ -51,7 +53,8 @@ void HybridNonlinearISAM::update(const HybridNonlinearFactorGraph& newFactors,
newFactors.linearize(linPoint_);
// Update ISAM
isam_.update(*linearizedNewFactors, boost::none, eliminationFunction_);
isam_.update(*linearizedNewFactors, maxNrLeaves, ordering,
eliminationFunction_);
}
}
@ -66,7 +69,7 @@ void HybridNonlinearISAM::reorder_relinearize() {
// Just recreate the whole BayesTree
// TODO: allow for constrained ordering here
// TODO: decouple relinearization and reordering to avoid
isam_.update(*factors_.linearize(newLinPoint), boost::none,
isam_.update(*factors_.linearize(newLinPoint), boost::none, boost::none,
eliminationFunction_);
// Update linearization point

View File

@ -82,12 +82,9 @@ class GTSAM_EXPORT HybridNonlinearISAM {
/**
* @brief Prune the underlying Bayes tree.
*
* @param root The root key in the discrete conditional decision tree.
* @param maxNumberLeaves
* @param maxNumberLeaves The max number of leaf nodes to keep.
*/
void prune(const Key& root, const size_t maxNumberLeaves) {
isam_.prune(root, maxNumberLeaves);
}
void prune(const size_t maxNumberLeaves) { isam_.prune(maxNumberLeaves); }
/** Return the current linearization point */
const Values& getLinearizationPoint() const { return linPoint_; }
@ -121,7 +118,9 @@ class GTSAM_EXPORT HybridNonlinearISAM {
/** Add new factors along with their initial linearization points */
void update(const HybridNonlinearFactorGraph& newFactors,
const Values& initialValues);
const Values& initialValues,
const boost::optional<size_t>& maxNrLeaves = boost::none,
const boost::optional<Ordering>& ordering = boost::none);
/** Relinearization and reordering of variables */
void reorder_relinearize();

View File

@ -115,7 +115,6 @@ inline std::pair<KeyVector, std::vector<int>> makeBinaryOrdering(
/* ***************************************************************************
*/
using MotionModel = BetweenFactor<double>;
// using MotionMixture = MixtureFactor<MotionModel>;
// Test fixture with switching network.
struct Switching {
@ -125,7 +124,13 @@ struct Switching {
HybridGaussianFactorGraph linearizedFactorGraph;
Values linearizationPoint;
/// Create with given number of time steps.
/**
* @brief Create with given number of time steps.
*
* @param K The total number of timesteps.
* @param between_sigma The stddev between poses.
* @param prior_sigma The stddev on priors (also used for measurements).
*/
Switching(size_t K, double between_sigma = 1.0, double prior_sigma = 0.1)
: K(K) {
// Create DiscreteKeys for binary K modes, modes[0] will not be used.
@ -166,6 +171,8 @@ struct Switching {
linearizationPoint.insert<double>(X(k), static_cast<double>(k));
}
// The ground truth is robot moving forward
// and one less than the linearization point
linearizedFactorGraph = *nonlinearFactorGraph.linearize(linearizationPoint);
}

View File

@ -52,6 +52,20 @@ TEST(HybridBayesNet, Creation) {
EXPECT(df.equals(expected));
}
/* ****************************************************************************/
// Test adding a bayes net to another one.
TEST(HybridBayesNet, Add) {
HybridBayesNet bayesNet;
bayesNet.add(Asia, "99/1");
DiscreteConditional expected(Asia, "99/1");
HybridBayesNet other;
other.push_back(bayesNet);
EXPECT(bayesNet.equals(other));
}
/* ****************************************************************************/
// Test choosing an assignment of conditionals
TEST(HybridBayesNet, Choose) {
@ -169,6 +183,24 @@ TEST(HybridBayesNet, OptimizeMultifrontal) {
EXPECT(assert_equal(expectedValues, delta.continuous(), 1e-5));
}
/* ****************************************************************************/
// Test bayes net pruning
TEST(HybridBayesNet, Prune) {
Switching s(4);
Ordering hybridOrdering = s.linearizedFactorGraph.getHybridOrdering();
HybridBayesNet::shared_ptr hybridBayesNet =
s.linearizedFactorGraph.eliminateSequential(hybridOrdering);
HybridValues delta = hybridBayesNet->optimize();
auto prunedBayesNet = hybridBayesNet->prune(2);
HybridValues pruned_delta = prunedBayesNet.optimize();
EXPECT(assert_equal(delta.discrete(), pruned_delta.discrete()));
EXPECT(assert_equal(delta.continuous(), pruned_delta.continuous()));
}
/* ****************************************************************************/
// Test HybridBayesNet serialization.
TEST(HybridBayesNet, Serialization) {

View File

@ -500,6 +500,7 @@ TEST(HybridGaussianFactorGraph, SwitchingTwoVar) {
}
}
/* ************************************************************************* */
TEST(HybridGaussianFactorGraph, optimize) {
HybridGaussianFactorGraph hfg;
@ -521,6 +522,46 @@ TEST(HybridGaussianFactorGraph, optimize) {
EXPECT(assert_equal(hv.atDiscrete(C(1)), int(0)));
}
/* ************************************************************************* */
// Test adding of gaussian conditional and re-elimination.
TEST(HybridGaussianFactorGraph, Conditionals) {
Switching switching(4);
HybridGaussianFactorGraph hfg;
hfg.push_back(switching.linearizedFactorGraph.at(0)); // P(X1)
Ordering ordering;
ordering.push_back(X(1));
HybridBayesNet::shared_ptr bayes_net = hfg.eliminateSequential(ordering);
hfg.push_back(switching.linearizedFactorGraph.at(1)); // P(X1, X2 | M1)
hfg.push_back(*bayes_net);
hfg.push_back(switching.linearizedFactorGraph.at(2)); // P(X2, X3 | M2)
hfg.push_back(switching.linearizedFactorGraph.at(5)); // P(M1)
ordering.push_back(X(2));
ordering.push_back(X(3));
ordering.push_back(M(1));
ordering.push_back(M(2));
bayes_net = hfg.eliminateSequential(ordering);
HybridValues result = bayes_net->optimize();
Values expected_continuous;
expected_continuous.insert<double>(X(1), 0);
expected_continuous.insert<double>(X(2), 1);
expected_continuous.insert<double>(X(3), 2);
expected_continuous.insert<double>(X(4), 4);
Values result_continuous =
switching.linearizationPoint.retract(result.continuous());
EXPECT(assert_equal(expected_continuous, result_continuous));
DiscreteValues expected_discrete;
expected_discrete[M(1)] = 1;
expected_discrete[M(2)] = 1;
EXPECT(assert_equal(expected_discrete, result.discrete()));
}
/* ************************************************************************* */
int main() {
TestResult tr;

View File

@ -235,7 +235,7 @@ TEST(HybridGaussianElimination, Approx_inference) {
size_t maxNrLeaves = 5;
incrementalHybrid.update(graph1);
incrementalHybrid.prune(M(3), maxNrLeaves);
incrementalHybrid.prune(maxNrLeaves);
/*
unpruned factor is:
@ -329,7 +329,7 @@ TEST(HybridGaussianElimination, Incremental_approximate) {
// Run update with pruning
size_t maxComponents = 5;
incrementalHybrid.update(graph1);
incrementalHybrid.prune(M(3), maxComponents);
incrementalHybrid.prune(maxComponents);
// Check if we have a bayes tree with 4 hybrid nodes,
// each with 2, 4, 8, and 5 (pruned) leaves respetively.
@ -350,7 +350,7 @@ TEST(HybridGaussianElimination, Incremental_approximate) {
// Run update with pruning a second time.
incrementalHybrid.update(graph2);
incrementalHybrid.prune(M(4), maxComponents);
incrementalHybrid.prune(maxComponents);
// Check if we have a bayes tree with pruned hybrid nodes,
// with 5 (pruned) leaves.
@ -496,7 +496,7 @@ TEST(HybridGaussianISAM, NonTrivial) {
// The MHS at this point should be a 2 level tree on (1, 2).
// 1 has 2 choices, and 2 has 4 choices.
inc.update(gfg);
inc.prune(M(2), 2);
inc.prune(2);
/*************** Run Round 4 ***************/
// Add odometry factor with discrete modes.
@ -531,7 +531,7 @@ TEST(HybridGaussianISAM, NonTrivial) {
// Keep pruning!
inc.update(gfg);
inc.prune(M(3), 3);
inc.prune(3);
// The final discrete graph should not be empty since we have eliminated
// all continuous variables.

View File

@ -256,7 +256,7 @@ TEST(HybridNonlinearISAM, Approx_inference) {
incrementalHybrid.update(graph1, initial);
HybridGaussianISAM bayesTree = incrementalHybrid.bayesTree();
bayesTree.prune(M(3), maxNrLeaves);
bayesTree.prune(maxNrLeaves);
/*
unpruned factor is:
@ -355,7 +355,7 @@ TEST(HybridNonlinearISAM, Incremental_approximate) {
incrementalHybrid.update(graph1, initial);
HybridGaussianISAM bayesTree = incrementalHybrid.bayesTree();
bayesTree.prune(M(3), maxComponents);
bayesTree.prune(maxComponents);
// Check if we have a bayes tree with 4 hybrid nodes,
// each with 2, 4, 8, and 5 (pruned) leaves respetively.
@ -380,7 +380,7 @@ TEST(HybridNonlinearISAM, Incremental_approximate) {
incrementalHybrid.update(graph2, initial);
bayesTree = incrementalHybrid.bayesTree();
bayesTree.prune(M(4), maxComponents);
bayesTree.prune(maxComponents);
// Check if we have a bayes tree with pruned hybrid nodes,
// with 5 (pruned) leaves.
@ -482,8 +482,7 @@ TEST(HybridNonlinearISAM, NonTrivial) {
still = boost::make_shared<PlanarMotionModel>(W(1), W(2), Pose2(0, 0, 0),
noise_model);
moving =
boost::make_shared<PlanarMotionModel>(W(1), W(2), odometry,
noise_model);
boost::make_shared<PlanarMotionModel>(W(1), W(2), odometry, noise_model);
components = {moving, still};
mixtureFactor = boost::make_shared<MixtureFactor>(
contKeys, DiscreteKeys{gtsam::DiscreteKey(M(2), 2)}, components);
@ -515,7 +514,7 @@ TEST(HybridNonlinearISAM, NonTrivial) {
// The MHS at this point should be a 2 level tree on (1, 2).
// 1 has 2 choices, and 2 has 4 choices.
inc.update(fg, initial);
inc.prune(M(2), 2);
inc.prune(2);
fg = HybridNonlinearFactorGraph();
initial = Values();
@ -526,8 +525,7 @@ TEST(HybridNonlinearISAM, NonTrivial) {
still = boost::make_shared<PlanarMotionModel>(W(2), W(3), Pose2(0, 0, 0),
noise_model);
moving =
boost::make_shared<PlanarMotionModel>(W(2), W(3), odometry,
noise_model);
boost::make_shared<PlanarMotionModel>(W(2), W(3), odometry, noise_model);
components = {moving, still};
mixtureFactor = boost::make_shared<MixtureFactor>(
contKeys, DiscreteKeys{gtsam::DiscreteKey(M(3), 2)}, components);
@ -551,7 +549,7 @@ TEST(HybridNonlinearISAM, NonTrivial) {
// Keep pruning!
inc.update(fg, initial);
inc.prune(M(3), 3);
inc.prune(3);
fg = HybridNonlinearFactorGraph();
initial = Values();
@ -560,8 +558,7 @@ TEST(HybridNonlinearISAM, NonTrivial) {
// The final discrete graph should not be empty since we have eliminated
// all continuous variables.
auto discreteTree =
bayesTree[M(3)]->conditional()->asDiscreteConditional();
auto discreteTree = bayesTree[M(3)]->conditional()->asDiscreteConditional();
EXPECT_LONGS_EQUAL(3, discreteTree->size());
// Test if the optimal discrete mode assignment is (1, 1, 1).

View File

@ -33,7 +33,6 @@ namespace gtsam {
// Forward declarations
template<class FACTOR> class FactorGraph;
template<class BAYESTREE, class GRAPH> class EliminatableClusterTree;
class HybridBayesTreeClique;
/* ************************************************************************* */
/** clique statistics */