Basic Pose2SLAM example. Marginals still missing.

release/4.3a0
Chris Beall 2010-10-14 01:07:55 +00:00
parent 129fc2c997
commit 4eab976e5c
2 changed files with 78 additions and 0 deletions

View File

@ -13,6 +13,7 @@ check_PROGRAMS =
# Examples
noinst_PROGRAMS = SimpleRotation # Optimizes a single nonlinear rotation variable
noinst_PROGRAMS += PlanarSLAMExample # Solves SLAM example from tutorial by using planarSLAM
noinst_PROGRAMS += Pose2SLAMExample # Solves SLAM example from tutorial by using planarSLAM
noinst_PROGRAMS += PlanarSLAMSelfContained # Solves SLAM example from tutorial with all typedefs in the script
#----------------------------------------------------------------------------------------------------

View File

@ -0,0 +1,77 @@
/**
* @file Pose2SLAMExample.cpp
* @brief Simple Pose2SLAM Example using
* pre-built pose2SLAM domain
* @author Chris Beall
*/
#include <cmath>
#include <iostream>
#include <boost/shared_ptr.hpp>
// pull in the Pose2 SLAM domain with all typedefs and helper functions defined
#include <gtsam/slam/pose2SLAM.h>
using namespace std;
using namespace gtsam;
using namespace boost;
using namespace gtsam::pose2SLAM;
int main(int argc, char** argv) {
// create keys for robot positions
Key x1(1), x2(2), x3(3);
/* 1. create graph container and add factors to it */
//Graph graph;
shared_ptr<Graph> graph(new Graph);
/* 2.a add prior */
// gaussian for prior
SharedDiagonal prior_model = noiseModel::Diagonal::Sigmas(Vector_(3, 0.3, 0.3, 0.1));
Pose2 prior_measurement(0.0, 0.0, 0.0); // prior at origin
graph->addPrior(x1, prior_measurement, prior_model); // add directly to graph
/* 2.b add odometry */
// general noisemodel for odometry
SharedDiagonal odom_model = noiseModel::Diagonal::Sigmas(Vector_(3, 0.2, 0.2, 0.1));
/* Pose2 measurements take (x,y,theta), where theta is taken from the positive x-axis*/
Pose2 odom_measurement(2.0, 0.0, 0.0); // create a measurement for both factors (the same in this case)
graph->addConstraint(x1, x2, odom_measurement, odom_model);
graph->addConstraint(x2, x3, odom_measurement, odom_model);
graph->print("Full Graph");
/* 3. Create the data structure to hold the initial estinmate to the solution
* initialize to noisy points */
shared_ptr<Values> initialEstimate(new Values);
initialEstimate->insert(x1, Pose2(0.5, 0.0, 0.2));
initialEstimate->insert(x2, Pose2(2.3, 0.1,-0.2));
initialEstimate->insert(x3, Pose2(4.1, 0.1, 0.1));
initialEstimate->print("Initial Estimate");
/* There are several ways to solve the graph. */
/* 4.1 Single Step:
* optimize using Levenberg-Marquardt optimization with an ordering from colamd */
Optimizer::shared_values result = Optimizer::optimizeLM(*graph, *initialEstimate);
result->print("Final Result");
/* 4.2.1 Alternatively, you can go through the process step by step
* Choose an ordering */
Ordering::shared_ptr ordering = graph->orderingCOLAMD(*initialEstimate).first;
/* 4.2.2 set up solver and optimize */
Optimizer::shared_solver solver(new Optimizer::solver(ordering));
Optimizer optimizer(graph, initialEstimate, solver);
Optimizer::verbosityLevel verbosity = pose2SLAM::Optimizer::SILENT;
Optimizer optimizer0 = optimizer.levenbergMarquardt(1e-15, 1e-15, verbosity);
Values result2 = *optimizer0.config();
result2.print("Final Result 2");
return 0;
}