Merge pull request #844 from borglab/add-python-type-hints

Add python type annotations to some older python files
release/4.3a0
Fan Jiang 2021-08-17 00:57:55 -04:00 committed by GitHub
commit 4ea2b2ee9a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 119 additions and 75 deletions

View File

@ -15,14 +15,14 @@ import numpy as np
import gtsam
from gtsam.utils.test_case import GtsamTestCase
from gtsam.utils.circlePose3 import *
from gtsam.utils.circlePose3 import circlePose3
class TestPose3SLAMExample(GtsamTestCase):
def test_Pose3SLAMExample(self):
def test_Pose3SLAMExample(self) -> None:
# Create a hexagon of poses
hexagon = circlePose3(6, 1.0)
hexagon = circlePose3(numPoses=6, radius=1.0)
p0 = hexagon.atPose3(0)
p1 = hexagon.atPose3(1)
@ -31,7 +31,7 @@ class TestPose3SLAMExample(GtsamTestCase):
fg.add(gtsam.NonlinearEqualityPose3(0, p0))
delta = p0.between(p1)
covariance = gtsam.noiseModel.Diagonal.Sigmas(
np.array([0.05, 0.05, 0.05, 5. * pi / 180, 5. * pi / 180, 5. * pi / 180]))
np.array([0.05, 0.05, 0.05, np.deg2rad(5.), np.deg2rad(5.), np.deg2rad(5.)]))
fg.add(gtsam.BetweenFactorPose3(0, 1, delta, covariance))
fg.add(gtsam.BetweenFactorPose3(1, 2, delta, covariance))
fg.add(gtsam.BetweenFactorPose3(2, 3, delta, covariance))

View File

@ -1,10 +1,10 @@
import gtsam
import math
import numpy as np
from math import pi
import gtsam
from gtsam import Values
def circlePose3(numPoses=8, radius=1.0, symbolChar='\0'):
def circlePose3(numPoses: int = 8, radius: float = 1.0, symbolChar: str = '\0') -> Values:
"""
circlePose3 generates a set of poses in a circle. This function
returns those poses inside a gtsam.Values object, with sequential
@ -21,14 +21,21 @@ def circlePose3(numPoses=8, radius=1.0, symbolChar='\0'):
values = gtsam.Values()
theta = 0.0
dtheta = 2 * pi / numPoses
dtheta = 2 * np.pi / numPoses
gRo = gtsam.Rot3(
np.array([[0., 1., 0.], [1., 0., 0.], [0., 0., -1.]], order='F'))
np.array(
[
[0., 1., 0.],
[1., 0., 0.],
[0., 0., -1.]
], order='F'
)
)
for i in range(numPoses):
key = gtsam.symbol(symbolChar, i)
gti = gtsam.Point3(radius * math.cos(theta), radius * math.sin(theta), 0)
oRi = gtsam.Rot3.Yaw(
-theta) # negative yaw goes counterclockwise, with Z down !
gti = gtsam.Point3(radius * np.cos(theta), radius * np.sin(theta), 0)
# negative yaw goes counterclockwise, with Z down !
oRi = gtsam.Rot3.Yaw(-theta)
gTi = gtsam.Pose3(gRo.compose(oRi), gti)
values.insert(key, gTi)
theta = theta + dtheta

View File

@ -2,22 +2,25 @@
# pylint: disable=no-member, invalid-name
from typing import Iterable, Optional, Tuple
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import patches
from mpl_toolkits.mplot3d import Axes3D # pylint: disable=unused-import
import gtsam
from gtsam import Marginals, Point3, Pose2, Values
def set_axes_equal(fignum):
def set_axes_equal(fignum: int) -> None:
"""
Make axes of 3D plot have equal scale so that spheres appear as spheres,
cubes as cubes, etc.. This is one possible solution to Matplotlib's
ax.set_aspect('equal') and ax.axis('equal') not working for 3D.
Args:
fignum (int): An integer representing the figure number for Matplotlib.
fignum: An integer representing the figure number for Matplotlib.
"""
fig = plt.figure(fignum)
ax = fig.gca(projection='3d')
@ -36,18 +39,20 @@ def set_axes_equal(fignum):
ax.set_zlim3d([origin[2] - radius, origin[2] + radius])
def ellipsoid(rx, ry, rz, n):
def ellipsoid(
rx: float, ry: float, rz: float, n: int
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
"""
Numpy equivalent of Matlab's ellipsoid function.
Args:
rx (double): Radius of ellipsoid in X-axis.
ry (double): Radius of ellipsoid in Y-axis.
rz (double): Radius of ellipsoid in Z-axis.
n (int): The granularity of the ellipsoid plotted.
rx: Radius of ellipsoid in X-axis.
ry: Radius of ellipsoid in Y-axis.
rz: Radius of ellipsoid in Z-axis.
n: The granularity of the ellipsoid plotted.
Returns:
tuple[numpy.ndarray]: The points in the x, y and z axes to use for the surface plot.
The points in the x, y and z axes to use for the surface plot.
"""
u = np.linspace(0, 2*np.pi, n+1)
v = np.linspace(0, np.pi, n+1)
@ -58,7 +63,9 @@ def ellipsoid(rx, ry, rz, n):
return x, y, z
def plot_covariance_ellipse_3d(axes, origin, P, scale=1, n=8, alpha=0.5):
def plot_covariance_ellipse_3d(
axes, origin: Point3, P: np.ndarray, scale: float = 1, n: int = 8, alpha: float = 0.5
) -> None:
"""
Plots a Gaussian as an uncertainty ellipse
@ -68,12 +75,12 @@ def plot_covariance_ellipse_3d(axes, origin, P, scale=1, n=8, alpha=0.5):
Args:
axes (matplotlib.axes.Axes): Matplotlib axes.
origin (gtsam.Point3): The origin in the world frame.
P (numpy.ndarray): The marginal covariance matrix of the 3D point
origin: The origin in the world frame.
P: The marginal covariance matrix of the 3D point
which will be represented as an ellipse.
scale (float): Scaling factor of the radii of the covariance ellipse.
n (int): Defines the granularity of the ellipse. Higher values indicate finer ellipses.
alpha (float): Transparency value for the plotted surface in the range [0, 1].
scale: Scaling factor of the radii of the covariance ellipse.
n: Defines the granularity of the ellipse. Higher values indicate finer ellipses.
alpha: Transparency value for the plotted surface in the range [0, 1].
"""
k = 11.82
U, S, _ = np.linalg.svd(P)
@ -96,14 +103,16 @@ def plot_covariance_ellipse_3d(axes, origin, P, scale=1, n=8, alpha=0.5):
axes.plot_surface(x, y, z, alpha=alpha, cmap='hot')
def plot_pose2_on_axes(axes, pose, axis_length=0.1, covariance=None):
def plot_pose2_on_axes(
axes, pose: Pose2, axis_length: float = 0.1, covariance: np.ndarray = None
) -> None:
"""
Plot a 2D pose on given axis `axes` with given `axis_length`.
Args:
axes (matplotlib.axes.Axes): Matplotlib axes.
pose (gtsam.Pose2): The pose to be plotted.
axis_length (float): The length of the camera axes.
pose: The pose to be plotted.
axis_length: The length of the camera axes.
covariance (numpy.ndarray): Marginal covariance matrix to plot
the uncertainty of the estimation.
"""
@ -136,16 +145,21 @@ def plot_pose2_on_axes(axes, pose, axis_length=0.1, covariance=None):
axes.add_patch(e1)
def plot_pose2(fignum, pose, axis_length=0.1, covariance=None,
axis_labels=('X axis', 'Y axis', 'Z axis')):
def plot_pose2(
fignum: int,
pose: Pose2,
axis_length: float = 0.1,
covariance: np.ndarray = None,
axis_labels=("X axis", "Y axis", "Z axis"),
) -> plt.Figure:
"""
Plot a 2D pose on given figure with given `axis_length`.
Args:
fignum (int): Integer representing the figure number to use for plotting.
pose (gtsam.Pose2): The pose to be plotted.
axis_length (float): The length of the camera axes.
covariance (numpy.ndarray): Marginal covariance matrix to plot
fignum: Integer representing the figure number to use for plotting.
pose: The pose to be plotted.
axis_length: The length of the camera axes.
covariance: Marginal covariance matrix to plot
the uncertainty of the estimation.
axis_labels (iterable[string]): List of axis labels to set.
"""
@ -161,32 +175,37 @@ def plot_pose2(fignum, pose, axis_length=0.1, covariance=None,
return fig
def plot_point3_on_axes(axes, point, linespec, P=None):
def plot_point3_on_axes(axes, point: Point3, linespec: str, P: Optional[np.ndarray] = None) -> None:
"""
Plot a 3D point on given axis `axes` with given `linespec`.
Args:
axes (matplotlib.axes.Axes): Matplotlib axes.
point (gtsam.Point3): The point to be plotted.
linespec (string): String representing formatting options for Matplotlib.
P (numpy.ndarray): Marginal covariance matrix to plot the uncertainty of the estimation.
point: The point to be plotted.
linespec: String representing formatting options for Matplotlib.
P: Marginal covariance matrix to plot the uncertainty of the estimation.
"""
axes.plot([point[0]], [point[1]], [point[2]], linespec)
if P is not None:
plot_covariance_ellipse_3d(axes, point, P)
def plot_point3(fignum, point, linespec, P=None,
axis_labels=('X axis', 'Y axis', 'Z axis')):
def plot_point3(
fignum: int,
point: Point3,
linespec: str,
P: np.ndarray = None,
axis_labels: Iterable[str] = ("X axis", "Y axis", "Z axis"),
) -> plt.Figure:
"""
Plot a 3D point on given figure with given `linespec`.
Args:
fignum (int): Integer representing the figure number to use for plotting.
point (gtsam.Point3): The point to be plotted.
linespec (string): String representing formatting options for Matplotlib.
P (numpy.ndarray): Marginal covariance matrix to plot the uncertainty of the estimation.
axis_labels (iterable[string]): List of axis labels to set.
fignum: Integer representing the figure number to use for plotting.
point: The point to be plotted.
linespec: String representing formatting options for Matplotlib.
P: Marginal covariance matrix to plot the uncertainty of the estimation.
axis_labels: List of axis labels to set.
Returns:
fig: The matplotlib figure.
@ -280,17 +299,22 @@ def plot_pose3_on_axes(axes, pose, axis_length=0.1, P=None, scale=1):
plot_covariance_ellipse_3d(axes, origin, gPp)
def plot_pose3(fignum, pose, axis_length=0.1, P=None,
axis_labels=('X axis', 'Y axis', 'Z axis')):
def plot_pose3(
fignum: int,
pose: Pose3,
axis_length: float = 0.1,
P: np.ndarray = None,
axis_labels: Iterable[str] = ("X axis", "Y axis", "Z axis"),
) -> plt.Figure:
"""
Plot a 3D pose on given figure with given `axis_length`.
Args:
fignum (int): Integer representing the figure number to use for plotting.
fignum: Integer representing the figure number to use for plotting.
pose (gtsam.Pose3): 3D pose to be plotted.
linespec (string): String representing formatting options for Matplotlib.
P (numpy.ndarray): Marginal covariance matrix to plot the uncertainty of the estimation.
axis_labels (iterable[string]): List of axis labels to set.
axis_length: The length of the camera axes.
P: Marginal covariance matrix to plot the uncertainty of the estimation.
axis_labels: List of axis labels to set.
Returns:
fig: The matplotlib figure.
@ -308,18 +332,24 @@ def plot_pose3(fignum, pose, axis_length=0.1, P=None,
return fig
def plot_trajectory(fignum, values, scale=1, marginals=None,
title="Plot Trajectory", axis_labels=('X axis', 'Y axis', 'Z axis')):
def plot_trajectory(
fignum: int,
values: Values,
scale: float = 1,
marginals: Marginals = None,
title: str = "Plot Trajectory",
axis_labels: Iterable[str] = ("X axis", "Y axis", "Z axis"),
) -> None:
"""
Plot a complete 2D/3D trajectory using poses in `values`.
Args:
fignum (int): Integer representing the figure number to use for plotting.
values (gtsam.Values): Values containing some Pose2 and/or Pose3 values.
scale (float): Value to scale the poses by.
marginals (gtsam.Marginals): Marginalized probability values of the estimation.
fignum: Integer representing the figure number to use for plotting.
values: Values containing some Pose2 and/or Pose3 values.
scale: Value to scale the poses by.
marginals: Marginalized probability values of the estimation.
Used to plot uncertainty bounds.
title (string): The title of the plot.
title: The title of the plot.
axis_labels (iterable[string]): List of axis labels to set.
"""
fig = plt.figure(fignum)
@ -357,20 +387,25 @@ def plot_trajectory(fignum, values, scale=1, marginals=None,
fig.canvas.set_window_title(title.lower())
def plot_incremental_trajectory(fignum, values, start=0,
scale=1, marginals=None,
time_interval=0.0):
def plot_incremental_trajectory(
fignum: int,
values: Values,
start: int = 0,
scale: float = 1,
marginals: Optional[Marginals] = None,
time_interval: float = 0.0
) -> None:
"""
Incrementally plot a complete 3D trajectory using poses in `values`.
Args:
fignum (int): Integer representing the figure number to use for plotting.
values (gtsam.Values): Values dict containing the poses.
start (int): Starting index to start plotting from.
scale (float): Value to scale the poses by.
marginals (gtsam.Marginals): Marginalized probability values of the estimation.
fignum: Integer representing the figure number to use for plotting.
values: Values dict containing the poses.
start: Starting index to start plotting from.
scale: Value to scale the poses by.
marginals: Marginalized probability values of the estimation.
Used to plot uncertainty bounds.
time_interval (float): Time in seconds to pause between each rendering.
time_interval: Time in seconds to pause between each rendering.
Used to create animation effect.
"""
fig = plt.figure(fignum)

View File

@ -1,8 +1,10 @@
from __future__ import print_function
from typing import Tuple
import numpy as np
import math
import numpy as np
from math import pi
import gtsam
from gtsam import Point3, Pose3, PinholeCameraCal3_S2, Cal3_S2
@ -12,7 +14,7 @@ class Options:
Options to generate test scenario
"""
def __init__(self, triangle=False, nrCameras=3, K=Cal3_S2()):
def __init__(self, triangle: bool = False, nrCameras: int = 3, K=Cal3_S2()) -> None:
"""
Options to generate test scenario
@param triangle: generate a triangle scene with 3 points if True, otherwise
@ -29,12 +31,12 @@ class GroundTruth:
Object holding generated ground-truth data
"""
def __init__(self, K=Cal3_S2(), nrCameras=3, nrPoints=4):
def __init__(self, K=Cal3_S2(), nrCameras: int = 3, nrPoints: int = 4) -> None:
self.K = K
self.cameras = [Pose3()] * nrCameras
self.points = [Point3(0, 0, 0)] * nrPoints
def print_(self, s=""):
def print_(self, s="") -> None:
print(s)
print("K = ", self.K)
print("Cameras: ", len(self.cameras))
@ -54,7 +56,7 @@ class Data:
class NoiseModels:
pass
def __init__(self, K=Cal3_S2(), nrCameras=3, nrPoints=4):
def __init__(self, K=Cal3_S2(), nrCameras: int = 3, nrPoints: int = 4) -> None:
self.K = K
self.Z = [x[:] for x in [[gtsam.Point2()] * nrPoints] * nrCameras]
self.J = [x[:] for x in [[0] * nrPoints] * nrCameras]
@ -72,7 +74,7 @@ class Data:
self.noiseModels.measurement = gtsam.noiseModel.Isotropic.Sigma(2, 1.0)
def generate_data(options):
def generate_data(options) -> Tuple[Data, GroundTruth]:
""" Generate ground-truth and measurement data. """
K = Cal3_S2(500, 500, 0, 640. / 2., 480. / 2.)