Small improvements
parent
48dd3cb769
commit
4e68feff37
|
@ -128,6 +128,12 @@ namespace gtsam {
|
|||
root_(new Node(l, keyValue, r)) {
|
||||
}
|
||||
|
||||
/** assignment operator */
|
||||
BTree & operator= (const BTree & other) {
|
||||
root_ = other.root_;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Check whether tree is empty */
|
||||
bool empty() const {
|
||||
return !root_;
|
||||
|
|
|
@ -27,147 +27,187 @@
|
|||
|
||||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* Disjoint Set Forest class
|
||||
*
|
||||
* Quoting from CLR: A disjoint-set data structure maintains a collection
|
||||
* S = {S_1,S_2,...} of disjoint dynamic sets. Each set is identified by
|
||||
* a representative, which is some member of the set.
|
||||
*
|
||||
* @addtogroup base
|
||||
*/
|
||||
template<class KEY>
|
||||
class DSF: protected BTree<KEY, KEY> {
|
||||
|
||||
public:
|
||||
typedef DSF<KEY> Self;
|
||||
typedef std::set<KEY> Set;
|
||||
typedef BTree<KEY, KEY> Tree;
|
||||
typedef std::pair<KEY, KEY> KeyLabel;
|
||||
|
||||
// constructor
|
||||
DSF() :
|
||||
Tree() {
|
||||
}
|
||||
|
||||
// constructor
|
||||
DSF(const Tree& tree) :
|
||||
Tree(tree) {
|
||||
}
|
||||
|
||||
// constructor with a list of unconnected keys
|
||||
DSF(const std::list<KEY>& keys) :
|
||||
Tree() {
|
||||
BOOST_FOREACH(const KEY& key, keys)
|
||||
*this = this->add(key, key);
|
||||
}
|
||||
|
||||
// constructor with a set of unconnected keys
|
||||
DSF(const std::set<KEY>& keys) :
|
||||
Tree() {
|
||||
BOOST_FOREACH(const KEY& key, keys)
|
||||
*this = this->add(key, key);
|
||||
}
|
||||
|
||||
// create a new singleton, does nothing if already exists
|
||||
Self makeSet(const KEY& key) const {
|
||||
if (this->mem(key))
|
||||
return *this;
|
||||
else
|
||||
return this->add(key, key);
|
||||
}
|
||||
|
||||
// create a new singleton, does nothing if already exists
|
||||
void makeSetInPlace(const KEY& key) {
|
||||
if (!this->mem(key))
|
||||
*this = this->add(key, key);
|
||||
}
|
||||
|
||||
// find the label of the set in which {key} lives
|
||||
KEY findSet(const KEY& key) const {
|
||||
KEY parent = this->find(key);
|
||||
return parent == key ? key : findSet(parent);
|
||||
}
|
||||
|
||||
// return a new DSF where x and y are in the same set. No path compression
|
||||
Self makeUnion(const KEY& key1, const KEY& key2) const {
|
||||
DSF<KEY> copy = *this;
|
||||
copy.makeUnionInPlace(key1,key2);
|
||||
return copy;
|
||||
}
|
||||
|
||||
// the in-place version of makeUnion
|
||||
void makeUnionInPlace(const KEY& key1, const KEY& key2) {
|
||||
*this = this->add(findSet_(key2), findSet_(key1));
|
||||
}
|
||||
|
||||
// create a new singleton with two connected keys
|
||||
Self makePair(const KEY& key1, const KEY& key2) const {
|
||||
return makeSet(key1).makeSet(key2).makeUnion(key1, key2);
|
||||
}
|
||||
|
||||
// create a new singleton with a list of fully connected keys
|
||||
Self makeList(const std::list<KEY>& keys) const {
|
||||
Self t = *this;
|
||||
BOOST_FOREACH(const KEY& key, keys)
|
||||
t = t.makePair(key, keys.front());
|
||||
return t;
|
||||
}
|
||||
|
||||
// return a dsf in which all find_set operations will be O(1) due to path compression.
|
||||
DSF flatten() const {
|
||||
DSF t = *this;
|
||||
BOOST_FOREACH(const KeyLabel& pair, (Tree)t)
|
||||
t.findSet_(pair.first);
|
||||
return t;
|
||||
}
|
||||
|
||||
// maps f over all keys, must be invertible
|
||||
DSF map(boost::function<KEY(const KEY&)> func) const {
|
||||
DSF t;
|
||||
BOOST_FOREACH(const KeyLabel& pair, (Tree)*this)
|
||||
t = t.add(func(pair.first), func(pair.second));
|
||||
return t;
|
||||
}
|
||||
|
||||
// return the number of sets
|
||||
size_t numSets() const {
|
||||
size_t num = 0;
|
||||
BOOST_FOREACH(const KeyLabel& pair, (Tree)*this)
|
||||
if (pair.first == pair.second)
|
||||
num++;
|
||||
return num;
|
||||
}
|
||||
|
||||
// return the numer of keys
|
||||
size_t size() const {
|
||||
return Tree::size();
|
||||
}
|
||||
|
||||
// return all sets, i.e. a partition of all elements
|
||||
std::map<KEY, Set> sets() const {
|
||||
std::map<KEY, Set> sets;
|
||||
BOOST_FOREACH(const KeyLabel& pair, (Tree)*this)
|
||||
sets[findSet(pair.second)].insert(pair.first);
|
||||
return sets;
|
||||
}
|
||||
|
||||
// return a partition of the given elements {keys}
|
||||
std::map<KEY, Set> partition(const std::list<KEY>& keys) const {
|
||||
std::map<KEY, Set> partitions;
|
||||
BOOST_FOREACH(const KEY& key, keys)
|
||||
partitions[findSet(key)].insert(key);
|
||||
return partitions;
|
||||
}
|
||||
|
||||
// get the nodes in the tree with the given label
|
||||
Set set(const KEY& label) const {
|
||||
Set set;
|
||||
BOOST_FOREACH(const KeyLabel& pair, (Tree)*this) {
|
||||
if (pair.second == label || findSet(pair.second) == label)
|
||||
set.insert(pair.first);
|
||||
}
|
||||
return set;
|
||||
}
|
||||
|
||||
/** equality */
|
||||
bool operator==(const Self& t) const {
|
||||
return (Tree) *this == (Tree) t;
|
||||
}
|
||||
|
||||
/** inequality */
|
||||
bool operator!=(const Self& t) const {
|
||||
return (Tree) *this != (Tree) t;
|
||||
}
|
||||
|
||||
// print the object
|
||||
void print(const std::string& name = "DSF") const {
|
||||
std::cout << name << std::endl;
|
||||
BOOST_FOREACH(const KeyLabel& pair, (Tree)*this)
|
||||
std::cout << (std::string) pair.first << " " << (std::string) pair.second
|
||||
<< std::endl;
|
||||
}
|
||||
|
||||
protected:
|
||||
|
||||
/**
|
||||
* Disjoint Set Forest class
|
||||
*
|
||||
* Quoting from CLR: A disjoint-set data structure maintains a collection
|
||||
* S = {S_1,S_2,...} of disjoint dynamic sets. Each set is identified by
|
||||
* a representative, which is some member of the set.
|
||||
*
|
||||
* @addtogroup base
|
||||
* same as findSet except with path compression: After we have traversed the path to
|
||||
* the root, each parent pointer is made to directly point to it
|
||||
*/
|
||||
template <class KEY>
|
||||
class DSF : protected BTree<KEY, KEY> {
|
||||
|
||||
public:
|
||||
typedef DSF<KEY> Self;
|
||||
typedef std::set<KEY> Set;
|
||||
typedef BTree<KEY, KEY> Tree;
|
||||
typedef std::pair<KEY, KEY> KeyLabel;
|
||||
|
||||
// constructor
|
||||
DSF() : Tree() { }
|
||||
|
||||
// constructor
|
||||
DSF(const Tree& tree) : Tree(tree) {}
|
||||
|
||||
// constructor with a list of unconnected keys
|
||||
DSF(const std::list<KEY>& keys) : Tree() { BOOST_FOREACH(const KEY& key, keys) *this = this->add(key, key); }
|
||||
|
||||
// constructor with a set of unconnected keys
|
||||
DSF(const std::set<KEY>& keys) : Tree() { BOOST_FOREACH(const KEY& key, keys) *this = this->add(key, key); }
|
||||
|
||||
// create a new singleton, does nothing if already exists
|
||||
Self makeSet(const KEY& key) const { if (this->mem(key)) return *this; else return this->add(key, key); }
|
||||
|
||||
// find the label of the set in which {key} lives
|
||||
KEY findSet(const KEY& key) const {
|
||||
KEY parent = this->find(key);
|
||||
return parent == key ? key : findSet(parent); }
|
||||
|
||||
// return a ***new*** DSF where x and y are in the same set. No path compression
|
||||
Self makeUnion(const KEY& key1, const KEY& key2) const { return this->add(findSet(key2), findSet(key1)); }
|
||||
|
||||
// the in-place version of makeUnion
|
||||
void makeUnionInPlace(const KEY& key1, const KEY& key2) { *this = this->add(findSet_(key2), findSet_(key1)); }
|
||||
|
||||
// create a new singleton with two connected keys
|
||||
Self makePair(const KEY& key1, const KEY& key2) const { return makeSet(key1).makeSet(key2).makeUnion(key1, key2); }
|
||||
|
||||
// create a new singleton with a list of fully connected keys
|
||||
Self makeList(const std::list<KEY>& keys) const {
|
||||
Self t = *this;
|
||||
BOOST_FOREACH(const KEY& key, keys)
|
||||
t = t.makePair(key, keys.front());
|
||||
return t;
|
||||
KEY findSet_(const KEY& key) {
|
||||
KEY parent = this->find(key);
|
||||
if (parent == key)
|
||||
return parent;
|
||||
else {
|
||||
KEY label = findSet_(parent);
|
||||
*this = this->add(key, label);
|
||||
return label;
|
||||
}
|
||||
}
|
||||
|
||||
// return a dsf in which all find_set operations will be O(1) due to path compression.
|
||||
DSF flatten() const {
|
||||
DSF t = *this;
|
||||
BOOST_FOREACH(const KeyLabel& pair, (Tree)t)
|
||||
t.findSet_(pair.first);
|
||||
return t;
|
||||
}
|
||||
};
|
||||
|
||||
// maps f over all keys, must be invertible
|
||||
DSF map(boost::function<KEY(const KEY&)> func) const {
|
||||
DSF t;
|
||||
BOOST_FOREACH(const KeyLabel& pair, (Tree)*this)
|
||||
t = t.add(func(pair.first), func(pair.second));
|
||||
return t;
|
||||
}
|
||||
|
||||
// return the number of sets
|
||||
size_t numSets() const {
|
||||
size_t num = 0;
|
||||
BOOST_FOREACH(const KeyLabel& pair, (Tree)*this)
|
||||
if (pair.first == pair.second) num++;
|
||||
return num;
|
||||
}
|
||||
|
||||
// return the numer of keys
|
||||
size_t size() const { return Tree::size(); }
|
||||
|
||||
// return all sets, i.e. a partition of all elements
|
||||
std::map<KEY, Set> sets() const {
|
||||
std::map<KEY, Set> sets;
|
||||
BOOST_FOREACH(const KeyLabel& pair, (Tree)*this)
|
||||
sets[findSet(pair.second)].insert(pair.first);
|
||||
return sets;
|
||||
}
|
||||
|
||||
// return a partition of the given elements {keys}
|
||||
std::map<KEY, Set> partition(const std::list<KEY>& keys) const {
|
||||
std::map<KEY, Set> partitions;
|
||||
BOOST_FOREACH(const KEY& key, keys)
|
||||
partitions[findSet(key)].insert(key);
|
||||
return partitions;
|
||||
}
|
||||
|
||||
// get the nodes in the tree with the given label
|
||||
Set set(const KEY& label) const {
|
||||
Set set;
|
||||
BOOST_FOREACH(const KeyLabel& pair, (Tree)*this) {
|
||||
if (pair.second == label || findSet(pair.second) == label)
|
||||
set.insert(pair.first);
|
||||
}
|
||||
return set;
|
||||
}
|
||||
|
||||
/** equality */
|
||||
bool operator==(const Self& t) const { return (Tree)*this == (Tree)t; }
|
||||
|
||||
/** inequality */
|
||||
bool operator!=(const Self& t) const { return (Tree)*this != (Tree)t; }
|
||||
|
||||
// print the object
|
||||
void print(const std::string& name = "DSF") const {
|
||||
std::cout << name << std::endl;
|
||||
BOOST_FOREACH(const KeyLabel& pair, (Tree)*this)
|
||||
std::cout << (std::string)pair.first << " " << (std::string)pair.second << std::endl;
|
||||
}
|
||||
|
||||
protected:
|
||||
|
||||
/**
|
||||
* same as findSet except with path compression: After we have traversed the path to
|
||||
* the root, each parent pointer is made to directly point to it
|
||||
*/
|
||||
KEY findSet_(const KEY& key) {
|
||||
KEY parent = this->find(key);
|
||||
if (parent == key)
|
||||
return parent;
|
||||
else {
|
||||
KEY label = findSet_(parent);
|
||||
*this = this->add(key, label);
|
||||
return label;
|
||||
}
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
// shortcuts
|
||||
typedef DSF<int> DSFInt;
|
||||
// shortcuts
|
||||
typedef DSF<int> DSFInt;
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
Loading…
Reference in New Issue