formatting of comments, added parent() interface for Bayes Tree cliques

release/4.3a0
Alex Cunningham 2012-06-26 18:49:30 +00:00
parent c7734db4fa
commit 4e2aae0121
3 changed files with 152 additions and 151 deletions

View File

@ -67,6 +67,7 @@ namespace gtsam {
of.close();
}
/* ************************************************************************* */
template<class CONDITIONAL, class CLIQUE>
void BayesTree<CONDITIONAL,CLIQUE>::saveGraph(std::ostream &s, sharedClique clique, const IndexFormatter& indexFormatter, int parentnum) const {
static int num = 0;
@ -101,7 +102,7 @@ namespace gtsam {
}
}
/* ************************************************************************* */
template<class CONDITIONAL, class CLIQUE>
typename BayesTree<CONDITIONAL,CLIQUE>::CliqueStats
BayesTree<CONDITIONAL,CLIQUE>::CliqueData::getStats() const {

View File

@ -117,6 +117,9 @@ namespace gtsam {
/** return the const reference of children */
const std::list<derived_ptr>& children() const { return children_; }
/** return a shared_ptr to the parent clique */
derived_ptr parent() const { return parent_.lock(); }
/// @}
/// @name Advanced Interface
/// @{

View File

@ -40,14 +40,14 @@ Key i3002 = 3002, i2002 = 2002, i1002 = 1002;
Key i3001 = 3001, i2001 = 2001, i1001 = 1001;
// TODO fix Ordering::equals, because the ordering *is* correct !
/* ************************************************************************* *
TEST( SubgraphPreconditioner, planarOrdering )
{
// Check canonical ordering
Ordering expected, ordering = planarOrdering(3);
expected += i3003, i2003, i1003, i3002, i2002, i1002, i3001, i2001, i1001;
CHECK(assert_equal(expected,ordering));
}
/* ************************************************************************* */
//TEST( SubgraphPreconditioner, planarOrdering )
//{
// // Check canonical ordering
// Ordering expected, ordering = planarOrdering(3);
// expected += i3003, i2003, i1003, i3002, i2002, i1002, i3001, i2001, i1001;
// CHECK(assert_equal(expected,ordering));
//}
/* ************************************************************************* */
TEST( SubgraphPreconditioner, planarGraph )
@ -66,148 +66,145 @@ TEST( SubgraphPreconditioner, planarGraph )
CHECK(assert_equal(xtrue,actual));
}
/* ************************************************************************* *
TEST( SubgraphPreconditioner, splitOffPlanarTree )
{
// Build a planar graph
GaussianFactorGraph A;
VectorValues xtrue;
boost::tie(A, xtrue) = planarGraph(3);
// Get the spanning tree and constraints, and check their sizes
JacobianFactorGraph T, C;
// TODO big mess: GFG and JFG mess !!!
boost::tie(T, C) = splitOffPlanarTree(3, A);
LONGS_EQUAL(9,T.size());
LONGS_EQUAL(4,C.size());
// Check that the tree can be solved to give the ground xtrue
GaussianBayesNet::shared_ptr R1 = GaussianSequentialSolver(T).eliminate();
VectorValues xbar = optimize(*R1);
CHECK(assert_equal(xtrue,xbar));
}
/* ************************************************************************* *
TEST( SubgraphPreconditioner, system )
{
// Build a planar graph
JacobianFactorGraph Ab;
VectorValues xtrue;
size_t N = 3;
boost::tie(Ab, xtrue) = planarGraph(N); // A*x-b
// Get the spanning tree and corresponding ordering
GaussianFactorGraph Ab1_, Ab2_; // A1*x-b1 and A2*x-b2
boost::tie(Ab1_, Ab2_) = splitOffPlanarTree(N, Ab);
SubgraphPreconditioner::sharedFG Ab1(new GaussianFactorGraph(Ab1_));
SubgraphPreconditioner::sharedFG Ab2(new GaussianFactorGraph(Ab2_));
// Eliminate the spanning tree to build a prior
SubgraphPreconditioner::sharedBayesNet Rc1 = GaussianSequentialSolver(Ab1_).eliminate(); // R1*x-c1
VectorValues xbar = optimize(*Rc1); // xbar = inv(R1)*c1
// Create Subgraph-preconditioned system
VectorValues::shared_ptr xbarShared(new VectorValues(xbar)); // TODO: horrible
SubgraphPreconditioner system(Ab1, Ab2, Rc1, xbarShared);
// Create zero config
VectorValues zeros = VectorValues::Zero(xbar);
// Set up y0 as all zeros
VectorValues y0 = zeros;
// y1 = perturbed y0
VectorValues y1 = zeros;
y1[i2003] = Vector_(2, 1.0, -1.0);
// Check corresponding x values
VectorValues expected_x1 = xtrue, x1 = system.x(y1);
expected_x1[i2003] = Vector_(2, 2.01, 2.99);
expected_x1[i3003] = Vector_(2, 3.01, 2.99);
CHECK(assert_equal(xtrue, system.x(y0)));
CHECK(assert_equal(expected_x1,system.x(y1)));
// Check errors
// DOUBLES_EQUAL(0,error(Ab,xtrue),1e-9); // TODO !
// DOUBLES_EQUAL(3,error(Ab,x1),1e-9); // TODO !
DOUBLES_EQUAL(0,error(system,y0),1e-9);
DOUBLES_EQUAL(3,error(system,y1),1e-9);
// Test gradient in x
VectorValues expected_gx0 = zeros;
VectorValues expected_gx1 = zeros;
CHECK(assert_equal(expected_gx0,gradient(Ab,xtrue)));
expected_gx1[i1003] = Vector_(2, -100., 100.);
expected_gx1[i2002] = Vector_(2, -100., 100.);
expected_gx1[i2003] = Vector_(2, 200., -200.);
expected_gx1[i3002] = Vector_(2, -100., 100.);
expected_gx1[i3003] = Vector_(2, 100., -100.);
CHECK(assert_equal(expected_gx1,gradient(Ab,x1)));
// Test gradient in y
VectorValues expected_gy0 = zeros;
VectorValues expected_gy1 = zeros;
expected_gy1[i1003] = Vector_(2, 2., -2.);
expected_gy1[i2002] = Vector_(2, -2., 2.);
expected_gy1[i2003] = Vector_(2, 3., -3.);
expected_gy1[i3002] = Vector_(2, -1., 1.);
expected_gy1[i3003] = Vector_(2, 1., -1.);
CHECK(assert_equal(expected_gy0,gradient(system,y0)));
CHECK(assert_equal(expected_gy1,gradient(system,y1)));
// Check it numerically for good measure
// TODO use boost::bind(&SubgraphPreconditioner::error,&system,_1)
// Vector numerical_g1 = numericalGradient<VectorValues> (error, y1, 0.001);
// Vector expected_g1 = Vector_(18, 0., 0., 0., 0., 2., -2., 0., 0., -2., 2.,
// 3., -3., 0., 0., -1., 1., 1., -1.);
// CHECK(assert_equal(expected_g1,numerical_g1));
}
/* ************************************************************************* *
TEST( SubgraphPreconditioner, conjugateGradients )
{
// Build a planar graph
GaussianFactorGraph Ab;
VectorValues xtrue;
size_t N = 3;
boost::tie(Ab, xtrue) = planarGraph(N); // A*x-b
// Get the spanning tree and corresponding ordering
GaussianFactorGraph Ab1_, Ab2_; // A1*x-b1 and A2*x-b2
boost::tie(Ab1_, Ab2_) = splitOffPlanarTree(N, Ab);
SubgraphPreconditioner::sharedFG Ab1(new GaussianFactorGraph(Ab1_));
SubgraphPreconditioner::sharedFG Ab2(new GaussianFactorGraph(Ab2_));
// Eliminate the spanning tree to build a prior
Ordering ordering = planarOrdering(N);
SubgraphPreconditioner::sharedBayesNet Rc1 = GaussianSequentialSolver(Ab1_).eliminate(); // R1*x-c1
VectorValues xbar = optimize(*Rc1); // xbar = inv(R1)*c1
// Create Subgraph-preconditioned system
VectorValues::shared_ptr xbarShared(new VectorValues(xbar)); // TODO: horrible
SubgraphPreconditioner system(Ab1, Ab2, Rc1, xbarShared);
// Create zero config y0 and perturbed config y1
VectorValues y0 = VectorValues::Zero(xbar);
VectorValues y1 = y0;
y1[i2003] = Vector_(2, 1.0, -1.0);
VectorValues x1 = system.x(y1);
// Solve for the remaining constraints using PCG
ConjugateGradientParameters parameters;
// VectorValues actual = gtsam::conjugateGradients<SubgraphPreconditioner,
// VectorValues, Errors>(system, y1, verbose, epsilon, epsilon, maxIterations);
// CHECK(assert_equal(y0,actual));
// Compare with non preconditioned version:
VectorValues actual2 = conjugateGradientDescent(Ab, x1, parameters);
CHECK(assert_equal(xtrue,actual2,1e-4));
}
/* ************************************************************************* */
//TEST( SubgraphPreconditioner, splitOffPlanarTree )
//{
// // Build a planar graph
// GaussianFactorGraph A;
// VectorValues xtrue;
// boost::tie(A, xtrue) = planarGraph(3);
//
// // Get the spanning tree and constraints, and check their sizes
// JacobianFactorGraph T, C;
// // TODO big mess: GFG and JFG mess !!!
// boost::tie(T, C) = splitOffPlanarTree(3, A);
// LONGS_EQUAL(9,T.size());
// LONGS_EQUAL(4,C.size());
//
// // Check that the tree can be solved to give the ground xtrue
// GaussianBayesNet::shared_ptr R1 = GaussianSequentialSolver(T).eliminate();
// VectorValues xbar = optimize(*R1);
// CHECK(assert_equal(xtrue,xbar));
//}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
//TEST( SubgraphPreconditioner, system )
//{
// // Build a planar graph
// JacobianFactorGraph Ab;
// VectorValues xtrue;
// size_t N = 3;
// boost::tie(Ab, xtrue) = planarGraph(N); // A*x-b
//
// // Get the spanning tree and corresponding ordering
// GaussianFactorGraph Ab1_, Ab2_; // A1*x-b1 and A2*x-b2
// boost::tie(Ab1_, Ab2_) = splitOffPlanarTree(N, Ab);
// SubgraphPreconditioner::sharedFG Ab1(new GaussianFactorGraph(Ab1_));
// SubgraphPreconditioner::sharedFG Ab2(new GaussianFactorGraph(Ab2_));
//
// // Eliminate the spanning tree to build a prior
// SubgraphPreconditioner::sharedBayesNet Rc1 = GaussianSequentialSolver(Ab1_).eliminate(); // R1*x-c1
// VectorValues xbar = optimize(*Rc1); // xbar = inv(R1)*c1
//
// // Create Subgraph-preconditioned system
// VectorValues::shared_ptr xbarShared(new VectorValues(xbar)); // TODO: horrible
// SubgraphPreconditioner system(Ab1, Ab2, Rc1, xbarShared);
//
// // Create zero config
// VectorValues zeros = VectorValues::Zero(xbar);
//
// // Set up y0 as all zeros
// VectorValues y0 = zeros;
//
// // y1 = perturbed y0
// VectorValues y1 = zeros;
// y1[i2003] = Vector_(2, 1.0, -1.0);
//
// // Check corresponding x values
// VectorValues expected_x1 = xtrue, x1 = system.x(y1);
// expected_x1[i2003] = Vector_(2, 2.01, 2.99);
// expected_x1[i3003] = Vector_(2, 3.01, 2.99);
// CHECK(assert_equal(xtrue, system.x(y0)));
// CHECK(assert_equal(expected_x1,system.x(y1)));
//
// // Check errors
//// DOUBLES_EQUAL(0,error(Ab,xtrue),1e-9); // TODO !
//// DOUBLES_EQUAL(3,error(Ab,x1),1e-9); // TODO !
// DOUBLES_EQUAL(0,error(system,y0),1e-9);
// DOUBLES_EQUAL(3,error(system,y1),1e-9);
//
// // Test gradient in x
// VectorValues expected_gx0 = zeros;
// VectorValues expected_gx1 = zeros;
// CHECK(assert_equal(expected_gx0,gradient(Ab,xtrue)));
// expected_gx1[i1003] = Vector_(2, -100., 100.);
// expected_gx1[i2002] = Vector_(2, -100., 100.);
// expected_gx1[i2003] = Vector_(2, 200., -200.);
// expected_gx1[i3002] = Vector_(2, -100., 100.);
// expected_gx1[i3003] = Vector_(2, 100., -100.);
// CHECK(assert_equal(expected_gx1,gradient(Ab,x1)));
//
// // Test gradient in y
// VectorValues expected_gy0 = zeros;
// VectorValues expected_gy1 = zeros;
// expected_gy1[i1003] = Vector_(2, 2., -2.);
// expected_gy1[i2002] = Vector_(2, -2., 2.);
// expected_gy1[i2003] = Vector_(2, 3., -3.);
// expected_gy1[i3002] = Vector_(2, -1., 1.);
// expected_gy1[i3003] = Vector_(2, 1., -1.);
// CHECK(assert_equal(expected_gy0,gradient(system,y0)));
// CHECK(assert_equal(expected_gy1,gradient(system,y1)));
//
// // Check it numerically for good measure
// // TODO use boost::bind(&SubgraphPreconditioner::error,&system,_1)
// // Vector numerical_g1 = numericalGradient<VectorValues> (error, y1, 0.001);
// // Vector expected_g1 = Vector_(18, 0., 0., 0., 0., 2., -2., 0., 0., -2., 2.,
// // 3., -3., 0., 0., -1., 1., 1., -1.);
// // CHECK(assert_equal(expected_g1,numerical_g1));
//}
/* ************************************************************************* */
//TEST( SubgraphPreconditioner, conjugateGradients )
//{
// // Build a planar graph
// GaussianFactorGraph Ab;
// VectorValues xtrue;
// size_t N = 3;
// boost::tie(Ab, xtrue) = planarGraph(N); // A*x-b
//
// // Get the spanning tree and corresponding ordering
// GaussianFactorGraph Ab1_, Ab2_; // A1*x-b1 and A2*x-b2
// boost::tie(Ab1_, Ab2_) = splitOffPlanarTree(N, Ab);
// SubgraphPreconditioner::sharedFG Ab1(new GaussianFactorGraph(Ab1_));
// SubgraphPreconditioner::sharedFG Ab2(new GaussianFactorGraph(Ab2_));
//
// // Eliminate the spanning tree to build a prior
// Ordering ordering = planarOrdering(N);
// SubgraphPreconditioner::sharedBayesNet Rc1 = GaussianSequentialSolver(Ab1_).eliminate(); // R1*x-c1
// VectorValues xbar = optimize(*Rc1); // xbar = inv(R1)*c1
//
// // Create Subgraph-preconditioned system
// VectorValues::shared_ptr xbarShared(new VectorValues(xbar)); // TODO: horrible
// SubgraphPreconditioner system(Ab1, Ab2, Rc1, xbarShared);
//
// // Create zero config y0 and perturbed config y1
// VectorValues y0 = VectorValues::Zero(xbar);
//
// VectorValues y1 = y0;
// y1[i2003] = Vector_(2, 1.0, -1.0);
// VectorValues x1 = system.x(y1);
//
// // Solve for the remaining constraints using PCG
// ConjugateGradientParameters parameters;
//// VectorValues actual = gtsam::conjugateGradients<SubgraphPreconditioner,
//// VectorValues, Errors>(system, y1, verbose, epsilon, epsilon, maxIterations);
//// CHECK(assert_equal(y0,actual));
//
// // Compare with non preconditioned version:
// VectorValues actual2 = conjugateGradientDescent(Ab, x1, parameters);
// CHECK(assert_equal(xtrue,actual2,1e-4));
//}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
/* ************************************************************************* */