formatting of comments, added parent() interface for Bayes Tree cliques
parent
c7734db4fa
commit
4e2aae0121
|
@ -67,6 +67,7 @@ namespace gtsam {
|
|||
of.close();
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class CONDITIONAL, class CLIQUE>
|
||||
void BayesTree<CONDITIONAL,CLIQUE>::saveGraph(std::ostream &s, sharedClique clique, const IndexFormatter& indexFormatter, int parentnum) const {
|
||||
static int num = 0;
|
||||
|
@ -101,7 +102,7 @@ namespace gtsam {
|
|||
}
|
||||
}
|
||||
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class CONDITIONAL, class CLIQUE>
|
||||
typename BayesTree<CONDITIONAL,CLIQUE>::CliqueStats
|
||||
BayesTree<CONDITIONAL,CLIQUE>::CliqueData::getStats() const {
|
||||
|
|
|
@ -117,6 +117,9 @@ namespace gtsam {
|
|||
/** return the const reference of children */
|
||||
const std::list<derived_ptr>& children() const { return children_; }
|
||||
|
||||
/** return a shared_ptr to the parent clique */
|
||||
derived_ptr parent() const { return parent_.lock(); }
|
||||
|
||||
/// @}
|
||||
/// @name Advanced Interface
|
||||
/// @{
|
||||
|
|
|
@ -40,14 +40,14 @@ Key i3002 = 3002, i2002 = 2002, i1002 = 1002;
|
|||
Key i3001 = 3001, i2001 = 2001, i1001 = 1001;
|
||||
|
||||
// TODO fix Ordering::equals, because the ordering *is* correct !
|
||||
/* ************************************************************************* *
|
||||
TEST( SubgraphPreconditioner, planarOrdering )
|
||||
{
|
||||
// Check canonical ordering
|
||||
Ordering expected, ordering = planarOrdering(3);
|
||||
expected += i3003, i2003, i1003, i3002, i2002, i1002, i3001, i2001, i1001;
|
||||
CHECK(assert_equal(expected,ordering));
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
//TEST( SubgraphPreconditioner, planarOrdering )
|
||||
//{
|
||||
// // Check canonical ordering
|
||||
// Ordering expected, ordering = planarOrdering(3);
|
||||
// expected += i3003, i2003, i1003, i3002, i2002, i1002, i3001, i2001, i1001;
|
||||
// CHECK(assert_equal(expected,ordering));
|
||||
//}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( SubgraphPreconditioner, planarGraph )
|
||||
|
@ -66,148 +66,145 @@ TEST( SubgraphPreconditioner, planarGraph )
|
|||
CHECK(assert_equal(xtrue,actual));
|
||||
}
|
||||
|
||||
/* ************************************************************************* *
|
||||
TEST( SubgraphPreconditioner, splitOffPlanarTree )
|
||||
{
|
||||
// Build a planar graph
|
||||
GaussianFactorGraph A;
|
||||
VectorValues xtrue;
|
||||
boost::tie(A, xtrue) = planarGraph(3);
|
||||
|
||||
// Get the spanning tree and constraints, and check their sizes
|
||||
JacobianFactorGraph T, C;
|
||||
// TODO big mess: GFG and JFG mess !!!
|
||||
boost::tie(T, C) = splitOffPlanarTree(3, A);
|
||||
LONGS_EQUAL(9,T.size());
|
||||
LONGS_EQUAL(4,C.size());
|
||||
|
||||
// Check that the tree can be solved to give the ground xtrue
|
||||
GaussianBayesNet::shared_ptr R1 = GaussianSequentialSolver(T).eliminate();
|
||||
VectorValues xbar = optimize(*R1);
|
||||
CHECK(assert_equal(xtrue,xbar));
|
||||
}
|
||||
|
||||
/* ************************************************************************* *
|
||||
TEST( SubgraphPreconditioner, system )
|
||||
{
|
||||
// Build a planar graph
|
||||
JacobianFactorGraph Ab;
|
||||
VectorValues xtrue;
|
||||
size_t N = 3;
|
||||
boost::tie(Ab, xtrue) = planarGraph(N); // A*x-b
|
||||
|
||||
// Get the spanning tree and corresponding ordering
|
||||
GaussianFactorGraph Ab1_, Ab2_; // A1*x-b1 and A2*x-b2
|
||||
boost::tie(Ab1_, Ab2_) = splitOffPlanarTree(N, Ab);
|
||||
SubgraphPreconditioner::sharedFG Ab1(new GaussianFactorGraph(Ab1_));
|
||||
SubgraphPreconditioner::sharedFG Ab2(new GaussianFactorGraph(Ab2_));
|
||||
|
||||
// Eliminate the spanning tree to build a prior
|
||||
SubgraphPreconditioner::sharedBayesNet Rc1 = GaussianSequentialSolver(Ab1_).eliminate(); // R1*x-c1
|
||||
VectorValues xbar = optimize(*Rc1); // xbar = inv(R1)*c1
|
||||
|
||||
// Create Subgraph-preconditioned system
|
||||
VectorValues::shared_ptr xbarShared(new VectorValues(xbar)); // TODO: horrible
|
||||
SubgraphPreconditioner system(Ab1, Ab2, Rc1, xbarShared);
|
||||
|
||||
// Create zero config
|
||||
VectorValues zeros = VectorValues::Zero(xbar);
|
||||
|
||||
// Set up y0 as all zeros
|
||||
VectorValues y0 = zeros;
|
||||
|
||||
// y1 = perturbed y0
|
||||
VectorValues y1 = zeros;
|
||||
y1[i2003] = Vector_(2, 1.0, -1.0);
|
||||
|
||||
// Check corresponding x values
|
||||
VectorValues expected_x1 = xtrue, x1 = system.x(y1);
|
||||
expected_x1[i2003] = Vector_(2, 2.01, 2.99);
|
||||
expected_x1[i3003] = Vector_(2, 3.01, 2.99);
|
||||
CHECK(assert_equal(xtrue, system.x(y0)));
|
||||
CHECK(assert_equal(expected_x1,system.x(y1)));
|
||||
|
||||
// Check errors
|
||||
// DOUBLES_EQUAL(0,error(Ab,xtrue),1e-9); // TODO !
|
||||
// DOUBLES_EQUAL(3,error(Ab,x1),1e-9); // TODO !
|
||||
DOUBLES_EQUAL(0,error(system,y0),1e-9);
|
||||
DOUBLES_EQUAL(3,error(system,y1),1e-9);
|
||||
|
||||
// Test gradient in x
|
||||
VectorValues expected_gx0 = zeros;
|
||||
VectorValues expected_gx1 = zeros;
|
||||
CHECK(assert_equal(expected_gx0,gradient(Ab,xtrue)));
|
||||
expected_gx1[i1003] = Vector_(2, -100., 100.);
|
||||
expected_gx1[i2002] = Vector_(2, -100., 100.);
|
||||
expected_gx1[i2003] = Vector_(2, 200., -200.);
|
||||
expected_gx1[i3002] = Vector_(2, -100., 100.);
|
||||
expected_gx1[i3003] = Vector_(2, 100., -100.);
|
||||
CHECK(assert_equal(expected_gx1,gradient(Ab,x1)));
|
||||
|
||||
// Test gradient in y
|
||||
VectorValues expected_gy0 = zeros;
|
||||
VectorValues expected_gy1 = zeros;
|
||||
expected_gy1[i1003] = Vector_(2, 2., -2.);
|
||||
expected_gy1[i2002] = Vector_(2, -2., 2.);
|
||||
expected_gy1[i2003] = Vector_(2, 3., -3.);
|
||||
expected_gy1[i3002] = Vector_(2, -1., 1.);
|
||||
expected_gy1[i3003] = Vector_(2, 1., -1.);
|
||||
CHECK(assert_equal(expected_gy0,gradient(system,y0)));
|
||||
CHECK(assert_equal(expected_gy1,gradient(system,y1)));
|
||||
|
||||
// Check it numerically for good measure
|
||||
// TODO use boost::bind(&SubgraphPreconditioner::error,&system,_1)
|
||||
// Vector numerical_g1 = numericalGradient<VectorValues> (error, y1, 0.001);
|
||||
// Vector expected_g1 = Vector_(18, 0., 0., 0., 0., 2., -2., 0., 0., -2., 2.,
|
||||
// 3., -3., 0., 0., -1., 1., 1., -1.);
|
||||
// CHECK(assert_equal(expected_g1,numerical_g1));
|
||||
}
|
||||
|
||||
/* ************************************************************************* *
|
||||
TEST( SubgraphPreconditioner, conjugateGradients )
|
||||
{
|
||||
// Build a planar graph
|
||||
GaussianFactorGraph Ab;
|
||||
VectorValues xtrue;
|
||||
size_t N = 3;
|
||||
boost::tie(Ab, xtrue) = planarGraph(N); // A*x-b
|
||||
|
||||
// Get the spanning tree and corresponding ordering
|
||||
GaussianFactorGraph Ab1_, Ab2_; // A1*x-b1 and A2*x-b2
|
||||
boost::tie(Ab1_, Ab2_) = splitOffPlanarTree(N, Ab);
|
||||
SubgraphPreconditioner::sharedFG Ab1(new GaussianFactorGraph(Ab1_));
|
||||
SubgraphPreconditioner::sharedFG Ab2(new GaussianFactorGraph(Ab2_));
|
||||
|
||||
// Eliminate the spanning tree to build a prior
|
||||
Ordering ordering = planarOrdering(N);
|
||||
SubgraphPreconditioner::sharedBayesNet Rc1 = GaussianSequentialSolver(Ab1_).eliminate(); // R1*x-c1
|
||||
VectorValues xbar = optimize(*Rc1); // xbar = inv(R1)*c1
|
||||
|
||||
// Create Subgraph-preconditioned system
|
||||
VectorValues::shared_ptr xbarShared(new VectorValues(xbar)); // TODO: horrible
|
||||
SubgraphPreconditioner system(Ab1, Ab2, Rc1, xbarShared);
|
||||
|
||||
// Create zero config y0 and perturbed config y1
|
||||
VectorValues y0 = VectorValues::Zero(xbar);
|
||||
|
||||
VectorValues y1 = y0;
|
||||
y1[i2003] = Vector_(2, 1.0, -1.0);
|
||||
VectorValues x1 = system.x(y1);
|
||||
|
||||
// Solve for the remaining constraints using PCG
|
||||
ConjugateGradientParameters parameters;
|
||||
// VectorValues actual = gtsam::conjugateGradients<SubgraphPreconditioner,
|
||||
// VectorValues, Errors>(system, y1, verbose, epsilon, epsilon, maxIterations);
|
||||
// CHECK(assert_equal(y0,actual));
|
||||
|
||||
// Compare with non preconditioned version:
|
||||
VectorValues actual2 = conjugateGradientDescent(Ab, x1, parameters);
|
||||
CHECK(assert_equal(xtrue,actual2,1e-4));
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
//TEST( SubgraphPreconditioner, splitOffPlanarTree )
|
||||
//{
|
||||
// // Build a planar graph
|
||||
// GaussianFactorGraph A;
|
||||
// VectorValues xtrue;
|
||||
// boost::tie(A, xtrue) = planarGraph(3);
|
||||
//
|
||||
// // Get the spanning tree and constraints, and check their sizes
|
||||
// JacobianFactorGraph T, C;
|
||||
// // TODO big mess: GFG and JFG mess !!!
|
||||
// boost::tie(T, C) = splitOffPlanarTree(3, A);
|
||||
// LONGS_EQUAL(9,T.size());
|
||||
// LONGS_EQUAL(4,C.size());
|
||||
//
|
||||
// // Check that the tree can be solved to give the ground xtrue
|
||||
// GaussianBayesNet::shared_ptr R1 = GaussianSequentialSolver(T).eliminate();
|
||||
// VectorValues xbar = optimize(*R1);
|
||||
// CHECK(assert_equal(xtrue,xbar));
|
||||
//}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
return TestRegistry::runAllTests(tr);
|
||||
}
|
||||
//TEST( SubgraphPreconditioner, system )
|
||||
//{
|
||||
// // Build a planar graph
|
||||
// JacobianFactorGraph Ab;
|
||||
// VectorValues xtrue;
|
||||
// size_t N = 3;
|
||||
// boost::tie(Ab, xtrue) = planarGraph(N); // A*x-b
|
||||
//
|
||||
// // Get the spanning tree and corresponding ordering
|
||||
// GaussianFactorGraph Ab1_, Ab2_; // A1*x-b1 and A2*x-b2
|
||||
// boost::tie(Ab1_, Ab2_) = splitOffPlanarTree(N, Ab);
|
||||
// SubgraphPreconditioner::sharedFG Ab1(new GaussianFactorGraph(Ab1_));
|
||||
// SubgraphPreconditioner::sharedFG Ab2(new GaussianFactorGraph(Ab2_));
|
||||
//
|
||||
// // Eliminate the spanning tree to build a prior
|
||||
// SubgraphPreconditioner::sharedBayesNet Rc1 = GaussianSequentialSolver(Ab1_).eliminate(); // R1*x-c1
|
||||
// VectorValues xbar = optimize(*Rc1); // xbar = inv(R1)*c1
|
||||
//
|
||||
// // Create Subgraph-preconditioned system
|
||||
// VectorValues::shared_ptr xbarShared(new VectorValues(xbar)); // TODO: horrible
|
||||
// SubgraphPreconditioner system(Ab1, Ab2, Rc1, xbarShared);
|
||||
//
|
||||
// // Create zero config
|
||||
// VectorValues zeros = VectorValues::Zero(xbar);
|
||||
//
|
||||
// // Set up y0 as all zeros
|
||||
// VectorValues y0 = zeros;
|
||||
//
|
||||
// // y1 = perturbed y0
|
||||
// VectorValues y1 = zeros;
|
||||
// y1[i2003] = Vector_(2, 1.0, -1.0);
|
||||
//
|
||||
// // Check corresponding x values
|
||||
// VectorValues expected_x1 = xtrue, x1 = system.x(y1);
|
||||
// expected_x1[i2003] = Vector_(2, 2.01, 2.99);
|
||||
// expected_x1[i3003] = Vector_(2, 3.01, 2.99);
|
||||
// CHECK(assert_equal(xtrue, system.x(y0)));
|
||||
// CHECK(assert_equal(expected_x1,system.x(y1)));
|
||||
//
|
||||
// // Check errors
|
||||
//// DOUBLES_EQUAL(0,error(Ab,xtrue),1e-9); // TODO !
|
||||
//// DOUBLES_EQUAL(3,error(Ab,x1),1e-9); // TODO !
|
||||
// DOUBLES_EQUAL(0,error(system,y0),1e-9);
|
||||
// DOUBLES_EQUAL(3,error(system,y1),1e-9);
|
||||
//
|
||||
// // Test gradient in x
|
||||
// VectorValues expected_gx0 = zeros;
|
||||
// VectorValues expected_gx1 = zeros;
|
||||
// CHECK(assert_equal(expected_gx0,gradient(Ab,xtrue)));
|
||||
// expected_gx1[i1003] = Vector_(2, -100., 100.);
|
||||
// expected_gx1[i2002] = Vector_(2, -100., 100.);
|
||||
// expected_gx1[i2003] = Vector_(2, 200., -200.);
|
||||
// expected_gx1[i3002] = Vector_(2, -100., 100.);
|
||||
// expected_gx1[i3003] = Vector_(2, 100., -100.);
|
||||
// CHECK(assert_equal(expected_gx1,gradient(Ab,x1)));
|
||||
//
|
||||
// // Test gradient in y
|
||||
// VectorValues expected_gy0 = zeros;
|
||||
// VectorValues expected_gy1 = zeros;
|
||||
// expected_gy1[i1003] = Vector_(2, 2., -2.);
|
||||
// expected_gy1[i2002] = Vector_(2, -2., 2.);
|
||||
// expected_gy1[i2003] = Vector_(2, 3., -3.);
|
||||
// expected_gy1[i3002] = Vector_(2, -1., 1.);
|
||||
// expected_gy1[i3003] = Vector_(2, 1., -1.);
|
||||
// CHECK(assert_equal(expected_gy0,gradient(system,y0)));
|
||||
// CHECK(assert_equal(expected_gy1,gradient(system,y1)));
|
||||
//
|
||||
// // Check it numerically for good measure
|
||||
// // TODO use boost::bind(&SubgraphPreconditioner::error,&system,_1)
|
||||
// // Vector numerical_g1 = numericalGradient<VectorValues> (error, y1, 0.001);
|
||||
// // Vector expected_g1 = Vector_(18, 0., 0., 0., 0., 2., -2., 0., 0., -2., 2.,
|
||||
// // 3., -3., 0., 0., -1., 1., 1., -1.);
|
||||
// // CHECK(assert_equal(expected_g1,numerical_g1));
|
||||
//}
|
||||
|
||||
/* ************************************************************************* */
|
||||
//TEST( SubgraphPreconditioner, conjugateGradients )
|
||||
//{
|
||||
// // Build a planar graph
|
||||
// GaussianFactorGraph Ab;
|
||||
// VectorValues xtrue;
|
||||
// size_t N = 3;
|
||||
// boost::tie(Ab, xtrue) = planarGraph(N); // A*x-b
|
||||
//
|
||||
// // Get the spanning tree and corresponding ordering
|
||||
// GaussianFactorGraph Ab1_, Ab2_; // A1*x-b1 and A2*x-b2
|
||||
// boost::tie(Ab1_, Ab2_) = splitOffPlanarTree(N, Ab);
|
||||
// SubgraphPreconditioner::sharedFG Ab1(new GaussianFactorGraph(Ab1_));
|
||||
// SubgraphPreconditioner::sharedFG Ab2(new GaussianFactorGraph(Ab2_));
|
||||
//
|
||||
// // Eliminate the spanning tree to build a prior
|
||||
// Ordering ordering = planarOrdering(N);
|
||||
// SubgraphPreconditioner::sharedBayesNet Rc1 = GaussianSequentialSolver(Ab1_).eliminate(); // R1*x-c1
|
||||
// VectorValues xbar = optimize(*Rc1); // xbar = inv(R1)*c1
|
||||
//
|
||||
// // Create Subgraph-preconditioned system
|
||||
// VectorValues::shared_ptr xbarShared(new VectorValues(xbar)); // TODO: horrible
|
||||
// SubgraphPreconditioner system(Ab1, Ab2, Rc1, xbarShared);
|
||||
//
|
||||
// // Create zero config y0 and perturbed config y1
|
||||
// VectorValues y0 = VectorValues::Zero(xbar);
|
||||
//
|
||||
// VectorValues y1 = y0;
|
||||
// y1[i2003] = Vector_(2, 1.0, -1.0);
|
||||
// VectorValues x1 = system.x(y1);
|
||||
//
|
||||
// // Solve for the remaining constraints using PCG
|
||||
// ConjugateGradientParameters parameters;
|
||||
//// VectorValues actual = gtsam::conjugateGradients<SubgraphPreconditioner,
|
||||
//// VectorValues, Errors>(system, y1, verbose, epsilon, epsilon, maxIterations);
|
||||
//// CHECK(assert_equal(y0,actual));
|
||||
//
|
||||
// // Compare with non preconditioned version:
|
||||
// VectorValues actual2 = conjugateGradientDescent(Ab, x1, parameters);
|
||||
// CHECK(assert_equal(xtrue,actual2,1e-4));
|
||||
//}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
|
||||
/* ************************************************************************* */
|
||||
|
|
Loading…
Reference in New Issue