Merge pull request #192 from ptrmu/develop
Test using AdjointMap for transforming Pose2 and Pose3 covariance matrices from body to world framesrelease/4.3a0
commit
4cba664b9f
|
@ -160,7 +160,6 @@ struct LieGroup {
|
|||
if (H2) *H2 = D_v_h;
|
||||
return v;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
/// tag to assert a type is a Lie group
|
||||
|
@ -336,6 +335,21 @@ T interpolate(const T& X, const T& Y, double t) {
|
|||
return traits<T>::Compose(X, traits<T>::Expmap(t * traits<T>::Logmap(traits<T>::Between(X, Y))));
|
||||
}
|
||||
|
||||
/**
|
||||
* Functor for transforming covariance of T.
|
||||
* T needs to satisfy the Lie group concept.
|
||||
*/
|
||||
template<class T>
|
||||
class TransformCovariance
|
||||
{
|
||||
private:
|
||||
typename T::Jacobian adjointMap_;
|
||||
public:
|
||||
explicit TransformCovariance(const T &X) : adjointMap_{X.AdjointMap()} {}
|
||||
typename T::Jacobian operator()(const typename T::Jacobian &covariance)
|
||||
{ return adjointMap_ * covariance * adjointMap_.transpose(); }
|
||||
};
|
||||
|
||||
} // namespace gtsam
|
||||
|
||||
/**
|
||||
|
|
|
@ -835,6 +835,81 @@ TEST(Pose2 , ChartDerivatives) {
|
|||
CHECK_CHART_DERIVATIVES(T2,T1);
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
#include "testPoseAdjointMap.h"
|
||||
|
||||
TEST(Pose2 , TransformCovariance3) {
|
||||
// Use simple covariance matrices and transforms to create tests that can be
|
||||
// validated with simple computations.
|
||||
using namespace test_pose_adjoint_map;
|
||||
|
||||
// rotate
|
||||
{
|
||||
auto cov = FullCovarianceFromSigmas<Pose2>({0.1, 0.3, 0.7});
|
||||
auto transformed = TransformCovariance<Pose2>{{0., 0., 90 * degree}}(cov);
|
||||
// interchange x and y axes
|
||||
EXPECT(assert_equal(
|
||||
Vector3{cov(1, 1), cov(0, 0), cov(2, 2)},
|
||||
Vector3{transformed.diagonal()}));
|
||||
EXPECT(assert_equal(
|
||||
Vector3{-cov(1, 0), -cov(2, 1), cov(2, 0)},
|
||||
Vector3{transformed(1, 0), transformed(2, 0), transformed(2, 1)}));
|
||||
}
|
||||
|
||||
// translate along x with uncertainty in x
|
||||
{
|
||||
auto cov = SingleVariableCovarianceFromSigma<Pose2>(0, 0.1);
|
||||
auto transformed = TransformCovariance<Pose2>{{20., 0., 0.}}(cov);
|
||||
// No change
|
||||
EXPECT(assert_equal(cov, transformed));
|
||||
}
|
||||
|
||||
// translate along x with uncertainty in y
|
||||
{
|
||||
auto cov = SingleVariableCovarianceFromSigma<Pose2>(1, 0.1);
|
||||
auto transformed = TransformCovariance<Pose2>{{20., 0., 0.}}(cov);
|
||||
// No change
|
||||
EXPECT(assert_equal(cov, transformed));
|
||||
}
|
||||
|
||||
// translate along x with uncertainty in theta
|
||||
{
|
||||
auto cov = SingleVariableCovarianceFromSigma<Pose2>(2, 0.1);
|
||||
auto transformed = TransformCovariance<Pose2>{{20., 0., 0.}}(cov);
|
||||
EXPECT(assert_equal(
|
||||
Vector3{0., 0.1 * 0.1 * 20. * 20., 0.1 * 0.1},
|
||||
Vector3{transformed.diagonal()}));
|
||||
EXPECT(assert_equal(
|
||||
Vector3{0., 0., -0.1 * 0.1 * 20.},
|
||||
Vector3{transformed(1, 0), transformed(2, 0), transformed(2, 1)}));
|
||||
}
|
||||
|
||||
// rotate and translate along x with uncertainty in x
|
||||
{
|
||||
auto cov = SingleVariableCovarianceFromSigma<Pose2>(0, 0.1);
|
||||
auto transformed = TransformCovariance<Pose2>{{20., 0., 90 * degree}}(cov);
|
||||
// interchange x and y axes
|
||||
EXPECT(assert_equal(
|
||||
Vector3{cov(1, 1), cov(0, 0), cov(2, 2)},
|
||||
Vector3{transformed.diagonal()}));
|
||||
EXPECT(assert_equal(
|
||||
Vector3{Z_3x1},
|
||||
Vector3{transformed(1, 0), transformed(2, 0), transformed(2, 1)}));
|
||||
}
|
||||
|
||||
// rotate and translate along x with uncertainty in theta
|
||||
{
|
||||
auto cov = SingleVariableCovarianceFromSigma<Pose2>(2, 0.1);
|
||||
auto transformed = TransformCovariance<Pose2>{{20., 0., 90 * degree}}(cov);
|
||||
EXPECT(assert_equal(
|
||||
Vector3{0., 0.1 * 0.1 * 20. * 20., 0.1 * 0.1},
|
||||
Vector3{transformed.diagonal()}));
|
||||
EXPECT(assert_equal(
|
||||
Vector3{0., 0., -0.1 * 0.1 * 20.},
|
||||
Vector3{transformed(1, 0), transformed(2, 0), transformed(2, 1)}));
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
|
|
|
@ -878,6 +878,105 @@ TEST(Pose3 , ChartDerivatives) {
|
|||
}
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
#include "testPoseAdjointMap.h"
|
||||
|
||||
TEST(Pose3, TransformCovariance6MapTo2d) {
|
||||
// Create 3d scenarios that map to 2d configurations and compare with Pose2 results.
|
||||
using namespace test_pose_adjoint_map;
|
||||
|
||||
Vector3 s2{0.1, 0.3, 0.7};
|
||||
Pose2 p2{1.1, 1.5, 31. * degree};
|
||||
auto cov2 = FullCovarianceFromSigmas<Pose2>(s2);
|
||||
auto transformed2 = TransformCovariance<Pose2>{p2}(cov2);
|
||||
|
||||
auto match_cov3_to_cov2 = [&](int spatial_axis0, int spatial_axis1, int r_axis,
|
||||
const Pose2::Jacobian &cov2, const Pose3::Jacobian &cov3) -> void
|
||||
{
|
||||
EXPECT(assert_equal(
|
||||
Vector3{cov2.diagonal()},
|
||||
Vector3{cov3(spatial_axis0, spatial_axis0), cov3(spatial_axis1, spatial_axis1), cov3(r_axis, r_axis)}));
|
||||
EXPECT(assert_equal(
|
||||
Vector3{cov2(1, 0), cov2(2, 0), cov2(2, 1)},
|
||||
Vector3{cov3(spatial_axis1, spatial_axis0), cov3(r_axis, spatial_axis0), cov3(r_axis, spatial_axis1)}));
|
||||
};
|
||||
|
||||
// rotate around x axis
|
||||
{
|
||||
auto cov3 = FullCovarianceFromSigmas<Pose3>((Vector6{} << s2(2), 0., 0., 0., s2(0), s2(1)).finished());
|
||||
auto transformed3 = TransformCovariance<Pose3>{{Rot3::RzRyRx(p2.theta(), 0., 0.), {0., p2.x(), p2.y()}}}(cov3);
|
||||
match_cov3_to_cov2(4, 5, 0, transformed2, transformed3);
|
||||
}
|
||||
|
||||
// rotate around y axis
|
||||
{
|
||||
auto cov3 = FullCovarianceFromSigmas<Pose3>((Vector6{} << 0., s2(2), 0., s2(1), 0., s2(0)).finished());
|
||||
auto transformed3 = TransformCovariance<Pose3>{{Rot3::RzRyRx(0., p2.theta(), 0.), {p2.y(), 0., p2.x()}}}(cov3);
|
||||
match_cov3_to_cov2(5, 3, 1, transformed2, transformed3);
|
||||
}
|
||||
|
||||
// rotate around z axis
|
||||
{
|
||||
auto cov3 = FullCovarianceFromSigmas<Pose3>((Vector6{} << 0., 0., s2(2), s2(0), s2(1), 0.).finished());
|
||||
auto transformed3 = TransformCovariance<Pose3>{{Rot3::RzRyRx(0., 0., p2.theta()), {p2.x(), p2.y(), 0.}}}(cov3);
|
||||
match_cov3_to_cov2(3, 4, 2, transformed2, transformed3);
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(Pose3, TransformCovariance6) {
|
||||
// Use simple covariance matrices and transforms to create tests that can be
|
||||
// validated with simple computations.
|
||||
using namespace test_pose_adjoint_map;
|
||||
|
||||
// rotate 90 around z axis and then 90 around y axis
|
||||
{
|
||||
auto cov = FullCovarianceFromSigmas<Pose3>((Vector6{} << 0.1, 0.2, 0.3, 0.5, 0.7, 1.1).finished());
|
||||
auto transformed = TransformCovariance<Pose3>{{Rot3::RzRyRx(0., 90 * degree, 90 * degree), {0., 0., 0.}}}(cov);
|
||||
// x from y, y from z, z from x
|
||||
EXPECT(assert_equal(
|
||||
(Vector6{} << cov(1, 1), cov(2, 2), cov(0, 0), cov(4, 4), cov(5, 5), cov(3, 3)).finished(),
|
||||
Vector6{transformed.diagonal()}));
|
||||
// Both the x and z axes are pointing in the negative direction.
|
||||
EXPECT(assert_equal(
|
||||
(Vector5{} << -cov(2, 1), cov(0, 1), cov(4, 1), -cov(5, 1), cov(3, 1)).finished(),
|
||||
(Vector5{} << transformed(1, 0), transformed(2, 0), transformed(3, 0),
|
||||
transformed(4, 0), transformed(5, 0)).finished()));
|
||||
}
|
||||
|
||||
// translate along the x axis with uncertainty in roty and rotz
|
||||
{
|
||||
auto cov = TwoVariableCovarianceFromSigmas<Pose3>(1, 2, 0.7, 0.3);
|
||||
auto transformed = TransformCovariance<Pose3>{{Rot3::RzRyRx(0., 0., 0.), {20., 0., 0.}}}(cov);
|
||||
// The uncertainty in roty and rotz causes off-diagonal covariances
|
||||
EXPECT(assert_equal(0.7 * 0.7 * 20., transformed(5, 1)));
|
||||
EXPECT(assert_equal(0.7 * 0.7 * 20. * 20., transformed(5, 5)));
|
||||
EXPECT(assert_equal(-0.3 * 0.3 * 20., transformed(4, 2)));
|
||||
EXPECT(assert_equal(0.3 * 0.3 * 20. * 20., transformed(4, 4)));
|
||||
EXPECT(assert_equal(-0.3 * 0.7 * 20., transformed(4, 1)));
|
||||
EXPECT(assert_equal(0.3 * 0.7 * 20., transformed(5, 2)));
|
||||
EXPECT(assert_equal(-0.3 * 0.7 * 20. * 20., transformed(5, 4)));
|
||||
}
|
||||
|
||||
// rotate around x axis and translate along the x axis with uncertainty in rotx
|
||||
{
|
||||
auto cov = SingleVariableCovarianceFromSigma<Pose3>(0, 0.1);
|
||||
auto transformed = TransformCovariance<Pose3>{{Rot3::RzRyRx(90 * degree, 0., 0.), {20., 0., 0.}}}(cov);
|
||||
// No change
|
||||
EXPECT(assert_equal(cov, transformed));
|
||||
}
|
||||
|
||||
// rotate around x axis and translate along the x axis with uncertainty in roty
|
||||
{
|
||||
auto cov = SingleVariableCovarianceFromSigma<Pose3>(1, 0.1);
|
||||
auto transformed = TransformCovariance<Pose3>{{Rot3::RzRyRx(90 * degree, 0., 0.), {20., 0., 0.}}}(cov);
|
||||
// Uncertainty is spread to other dimensions.
|
||||
EXPECT(assert_equal(
|
||||
(Vector6{} << 0., 0., 0.1 * 0.1, 0., 0.1 * 0.1 * 20. * 20., 0.).finished(),
|
||||
Vector6{transformed.diagonal()}));
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(Pose3, interpolate) {
|
||||
EXPECT(assert_equal(T2, interpolate(T2,T3, 0.0)));
|
||||
|
|
|
@ -0,0 +1,59 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file testPoseAdjointMap.h
|
||||
* @brief Support utilities for using AdjointMap for transforming Pose2 and Pose3 covariance matrices
|
||||
* @author Peter Mulllen
|
||||
* @author Frank Dellaert
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/geometry/Pose2.h>
|
||||
#include <gtsam/geometry/Pose3.h>
|
||||
|
||||
namespace test_pose_adjoint_map
|
||||
{
|
||||
const double degree = M_PI / 180;
|
||||
|
||||
// Return a covariance matrix for type T with non-zero values for every element.
|
||||
// Use sigma_values^2 on the diagonal and fill in non-diagonal entries with
|
||||
// correlation coefficient of 1. Note: a covariance matrix for T has the same
|
||||
// dimensions as a Jacobian for T, the returned matrix is not a Jacobian.
|
||||
template<class T>
|
||||
typename T::Jacobian FullCovarianceFromSigmas(
|
||||
const typename T::TangentVector &sigmas)
|
||||
{
|
||||
return sigmas * sigmas.transpose();
|
||||
}
|
||||
|
||||
// Return a covariance matrix with one non-zero element on the diagonal.
|
||||
template<class T>
|
||||
typename T::Jacobian SingleVariableCovarianceFromSigma(int idx, double sigma)
|
||||
{
|
||||
typename T::Jacobian cov = T::Jacobian::Zero();
|
||||
cov(idx, idx) = sigma * sigma;
|
||||
return cov;
|
||||
}
|
||||
|
||||
// Return a covariance matrix with two non-zero elements on the diagonal and
|
||||
// a correlation of 1.0 between the two variables.
|
||||
template<class T>
|
||||
typename T::Jacobian TwoVariableCovarianceFromSigmas(int idx0, int idx1, double sigma0, double sigma1)
|
||||
{
|
||||
typename T::Jacobian cov = T::Jacobian::Zero();
|
||||
cov(idx0, idx0) = sigma0 * sigma0;
|
||||
cov(idx1, idx1) = sigma1 * sigma1;
|
||||
cov(idx0, idx1) = cov(idx1, idx0) = sigma0 * sigma1;
|
||||
return cov;
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue