model selection for HybridBayesTree

release/4.3a0
Varun Agrawal 2024-01-16 15:01:31 -05:00
parent e7cb7b2dcd
commit 4b2a22eaa5
2 changed files with 146 additions and 4 deletions

View File

@ -38,19 +38,116 @@ bool HybridBayesTree::equals(const This& other, double tol) const {
return Base::equals(other, tol);
}
GaussianBayesNetTree& HybridBayesTree::addCliqueToTree(
const sharedClique& clique, GaussianBayesNetTree& result) const {
// Perform bottom-up inclusion
for (sharedClique child : clique->children) {
result = addCliqueToTree(child, result);
}
auto f = clique->conditional();
if (auto hc = std::dynamic_pointer_cast<HybridConditional>(f)) {
if (auto gm = hc->asMixture()) {
result = gm->add(result);
} else if (auto g = hc->asGaussian()) {
result = addGaussian(result, g);
} else {
// Has to be discrete, which we don't add.
}
}
return result;
}
/* ************************************************************************ */
GaussianBayesNetValTree HybridBayesTree::assembleTree() const {
GaussianBayesNetTree result;
for (auto&& root : roots_) {
result = addCliqueToTree(root, result);
}
GaussianBayesNetValTree resultTree(result, [](const GaussianBayesNet& gbn) {
return std::make_pair(gbn, 0.0);
});
return resultTree;
}
/* ************************************************************************* */
AlgebraicDecisionTree<Key> HybridBayesTree::modelSelection() const {
/*
To perform model selection, we need:
q(mu; M, Z) * sqrt((2*pi)^n*det(Sigma))
If q(mu; M, Z) = exp(-error) & k = 1.0 / sqrt((2*pi)^n*det(Sigma))
thus, q * sqrt((2*pi)^n*det(Sigma)) = q/k = exp(log(q/k))
= exp(log(q) - log(k)) = exp(-error - log(k))
= exp(-(error + log(k))),
where error is computed at the corresponding MAP point, gbt.error(mu).
So we compute (error + log(k)) and exponentiate later
*/
GaussianBayesNetValTree bnTree = assembleTree();
GaussianBayesNetValTree bn_error = bnTree.apply(
[this](const Assignment<Key>& assignment,
const std::pair<GaussianBayesNet, double>& gbnAndValue) {
// Compute the X* of each assignment
VectorValues mu = gbnAndValue.first.optimize();
// mu is empty if gbn had nullptrs
if (mu.size() == 0) {
return std::make_pair(gbnAndValue.first,
std::numeric_limits<double>::max());
}
// Compute the error for X* and the assignment
double error =
this->error(HybridValues(mu, DiscreteValues(assignment)));
return std::make_pair(gbnAndValue.first, error);
});
auto trees = unzip(bn_error);
AlgebraicDecisionTree<Key> errorTree = trees.second;
// Only compute logNormalizationConstant
AlgebraicDecisionTree<Key> log_norm_constants =
computeLogNormConstants(bnTree);
// Compute model selection term (with help from ADT methods)
AlgebraicDecisionTree<Key> modelSelectionTerm =
computeModelSelectionTerm(errorTree, log_norm_constants);
return modelSelectionTerm;
}
/* ************************************************************************* */
HybridValues HybridBayesTree::optimize() const {
DiscreteBayesNet dbn;
DiscreteFactorGraph discrete_fg;
DiscreteValues mpe;
// Compute model selection term
AlgebraicDecisionTree<Key> modelSelectionTerm = modelSelection();
auto root = roots_.at(0);
// Access the clique and get the underlying hybrid conditional
HybridConditional::shared_ptr root_conditional = root->conditional();
// Get the set of all discrete keys involved in model selection
std::set<DiscreteKey> discreteKeySet;
// The root should be discrete only, we compute the MPE
if (root_conditional->isDiscrete()) {
dbn.push_back(root_conditional->asDiscrete());
mpe = DiscreteFactorGraph(dbn).optimize();
discrete_fg.push_back(root_conditional->asDiscrete());
// Only add model_selection if we have discrete keys
if (discreteKeySet.size() > 0) {
discrete_fg.push_back(DecisionTreeFactor(
DiscreteKeys(discreteKeySet.begin(), discreteKeySet.end()),
modelSelectionTerm));
}
mpe = discrete_fg.optimize();
} else {
throw std::runtime_error(
"HybridBayesTree root is not discrete-only. Please check elimination "

View File

@ -84,6 +84,51 @@ class GTSAM_EXPORT HybridBayesTree : public BayesTree<HybridBayesTreeClique> {
*/
GaussianBayesTree choose(const DiscreteValues& assignment) const;
/** Error for all conditionals. */
double error(const HybridValues& values) const {
return HybridGaussianFactorGraph(*this).error(values);
}
/**
* @brief Helper function to add a clique of hybrid conditionals to the passed
* in GaussianBayesNetTree. Operates recursively on the clique in a bottom-up
* fashion, adding the children first.
*
* @param clique The
* @param result
* @return GaussianBayesNetTree&
*/
GaussianBayesNetTree& addCliqueToTree(const sharedClique& clique,
GaussianBayesNetTree& result) const;
/**
* @brief Assemble a DecisionTree of (GaussianBayesTree, double) leaves for
* each discrete assignment.
* The included double value is used to make
* constructing the model selection term cleaner and more efficient.
*
* @return GaussianBayesNetValTree
*/
GaussianBayesNetValTree assembleTree() const;
/*
Compute L(M;Z), the likelihood of the discrete model M
given the measurements Z.
This is called the model selection term.
To do so, we perform the integration of L(M;Z) L(X;M,Z)P(X|M).
By Bayes' rule, P(X|M,Z) L(X;M,Z)P(X|M),
hence L(X;M,Z)P(X|M) is the unnormalized probabilty of
the joint Gaussian distribution.
This can be computed by multiplying all the exponentiated errors
of each of the conditionals.
Return a tree where each leaf value is L(M_i;Z).
*/
AlgebraicDecisionTree<Key> modelSelection() const;
/**
* @brief Optimize the hybrid Bayes tree by computing the MPE for the current
* set of discrete variables and using it to compute the best continuous