update gtsam:: namespace in sfm.i
parent
f6dbcb695d
commit
49ff90dda9
|
|
@ -81,7 +81,7 @@ virtual class ShonanFactor3 : gtsam::NoiseModelFactor {
|
||||||
ShonanFactor3(size_t key1, size_t key2, const gtsam::Rot3& R12, size_t p);
|
ShonanFactor3(size_t key1, size_t key2, const gtsam::Rot3& R12, size_t p);
|
||||||
ShonanFactor3(size_t key1, size_t key2, const gtsam::Rot3& R12, size_t p,
|
ShonanFactor3(size_t key1, size_t key2, const gtsam::Rot3& R12, size_t p,
|
||||||
gtsam::noiseModel::Base* model);
|
gtsam::noiseModel::Base* model);
|
||||||
Vector evaluateError(const gtsam::SOn& Q1, const gtsam::SOn& Q2);
|
gtsam::Vector evaluateError(const gtsam::SOn& Q1, const gtsam::SOn& Q2);
|
||||||
};
|
};
|
||||||
|
|
||||||
#include <gtsam/sfm/BinaryMeasurement.h>
|
#include <gtsam/sfm/BinaryMeasurement.h>
|
||||||
|
|
@ -162,23 +162,23 @@ class ShonanAveraging2 {
|
||||||
gtsam::Rot2 measured(size_t i);
|
gtsam::Rot2 measured(size_t i);
|
||||||
gtsam::KeyVector keys(size_t i);
|
gtsam::KeyVector keys(size_t i);
|
||||||
|
|
||||||
// Matrix API (advanced use, debugging)
|
// gtsam::Matrix API (advanced use, debugging)
|
||||||
Matrix denseD() const;
|
gtsam::Matrix denseD() const;
|
||||||
Matrix denseQ() const;
|
gtsam::Matrix denseQ() const;
|
||||||
Matrix denseL() const;
|
gtsam::Matrix denseL() const;
|
||||||
// Matrix computeLambda_(Matrix S) const;
|
// gtsam::Matrix computeLambda_(gtsam::Matrix S) const;
|
||||||
Matrix computeLambda_(const gtsam::Values& values) const;
|
gtsam::Matrix computeLambda_(const gtsam::Values& values) const;
|
||||||
Matrix computeA_(const gtsam::Values& values) const;
|
gtsam::Matrix computeA_(const gtsam::Values& values) const;
|
||||||
double computeMinEigenValue(const gtsam::Values& values) const;
|
double computeMinEigenValue(const gtsam::Values& values) const;
|
||||||
gtsam::Values initializeWithDescent(size_t p, const gtsam::Values& values,
|
gtsam::Values initializeWithDescent(size_t p, const gtsam::Values& values,
|
||||||
const Vector& minEigenVector,
|
const gtsam::Vector& minEigenVector,
|
||||||
double minEigenValue) const;
|
double minEigenValue) const;
|
||||||
|
|
||||||
// Advanced API
|
// Advanced API
|
||||||
gtsam::NonlinearFactorGraph buildGraphAt(size_t p) const;
|
gtsam::NonlinearFactorGraph buildGraphAt(size_t p) const;
|
||||||
gtsam::Values initializeRandomlyAt(size_t p) const;
|
gtsam::Values initializeRandomlyAt(size_t p) const;
|
||||||
double costAt(size_t p, const gtsam::Values& values) const;
|
double costAt(size_t p, const gtsam::Values& values) const;
|
||||||
pair<double, Vector> computeMinEigenVector(const gtsam::Values& values) const;
|
pair<double, gtsam::Vector> computeMinEigenVector(const gtsam::Values& values) const;
|
||||||
bool checkOptimality(const gtsam::Values& values) const;
|
bool checkOptimality(const gtsam::Values& values) const;
|
||||||
gtsam::LevenbergMarquardtOptimizer* createOptimizerAt(
|
gtsam::LevenbergMarquardtOptimizer* createOptimizerAt(
|
||||||
size_t p, const gtsam::Values& initial);
|
size_t p, const gtsam::Values& initial);
|
||||||
|
|
@ -212,23 +212,23 @@ class ShonanAveraging3 {
|
||||||
gtsam::Rot3 measured(size_t i);
|
gtsam::Rot3 measured(size_t i);
|
||||||
gtsam::KeyVector keys(size_t i);
|
gtsam::KeyVector keys(size_t i);
|
||||||
|
|
||||||
// Matrix API (advanced use, debugging)
|
// gtsam::Matrix API (advanced use, debugging)
|
||||||
Matrix denseD() const;
|
gtsam::Matrix denseD() const;
|
||||||
Matrix denseQ() const;
|
gtsam::Matrix denseQ() const;
|
||||||
Matrix denseL() const;
|
gtsam::Matrix denseL() const;
|
||||||
// Matrix computeLambda_(Matrix S) const;
|
// gtsam::Matrix computeLambda_(gtsam::Matrix S) const;
|
||||||
Matrix computeLambda_(const gtsam::Values& values) const;
|
gtsam::Matrix computeLambda_(const gtsam::Values& values) const;
|
||||||
Matrix computeA_(const gtsam::Values& values) const;
|
gtsam::Matrix computeA_(const gtsam::Values& values) const;
|
||||||
double computeMinEigenValue(const gtsam::Values& values) const;
|
double computeMinEigenValue(const gtsam::Values& values) const;
|
||||||
gtsam::Values initializeWithDescent(size_t p, const gtsam::Values& values,
|
gtsam::Values initializeWithDescent(size_t p, const gtsam::Values& values,
|
||||||
const Vector& minEigenVector,
|
const gtsam::Vector& minEigenVector,
|
||||||
double minEigenValue) const;
|
double minEigenValue) const;
|
||||||
|
|
||||||
// Advanced API
|
// Advanced API
|
||||||
gtsam::NonlinearFactorGraph buildGraphAt(size_t p) const;
|
gtsam::NonlinearFactorGraph buildGraphAt(size_t p) const;
|
||||||
gtsam::Values initializeRandomlyAt(size_t p) const;
|
gtsam::Values initializeRandomlyAt(size_t p) const;
|
||||||
double costAt(size_t p, const gtsam::Values& values) const;
|
double costAt(size_t p, const gtsam::Values& values) const;
|
||||||
pair<double, Vector> computeMinEigenVector(const gtsam::Values& values) const;
|
pair<double, gtsam::Vector> computeMinEigenVector(const gtsam::Values& values) const;
|
||||||
bool checkOptimality(const gtsam::Values& values) const;
|
bool checkOptimality(const gtsam::Values& values) const;
|
||||||
gtsam::LevenbergMarquardtOptimizer* createOptimizerAt(
|
gtsam::LevenbergMarquardtOptimizer* createOptimizerAt(
|
||||||
size_t p, const gtsam::Values& initial);
|
size_t p, const gtsam::Values& initial);
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue