Merge pull request #922 from borglab/feature/Pose3adjointJacobians
Add Jacobian of second argument to `adjoint` and `adjointTranpsose`release/4.3a0
commit
496a206d08
|
@ -115,7 +115,7 @@ Matrix6 Pose3::adjointMap(const Vector6& xi) {
|
|||
|
||||
/* ************************************************************************* */
|
||||
Vector6 Pose3::adjoint(const Vector6& xi, const Vector6& y,
|
||||
OptionalJacobian<6, 6> Hxi) {
|
||||
OptionalJacobian<6, 6> Hxi, OptionalJacobian<6, 6> H_y) {
|
||||
if (Hxi) {
|
||||
Hxi->setZero();
|
||||
for (int i = 0; i < 6; ++i) {
|
||||
|
@ -126,12 +126,14 @@ Vector6 Pose3::adjoint(const Vector6& xi, const Vector6& y,
|
|||
Hxi->col(i) = Gi * y;
|
||||
}
|
||||
}
|
||||
return adjointMap(xi) * y;
|
||||
const Matrix6& ad_xi = adjointMap(xi);
|
||||
if (H_y) *H_y = ad_xi;
|
||||
return ad_xi * y;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Vector6 Pose3::adjointTranspose(const Vector6& xi, const Vector6& y,
|
||||
OptionalJacobian<6, 6> Hxi) {
|
||||
OptionalJacobian<6, 6> Hxi, OptionalJacobian<6, 6> H_y) {
|
||||
if (Hxi) {
|
||||
Hxi->setZero();
|
||||
for (int i = 0; i < 6; ++i) {
|
||||
|
@ -142,7 +144,9 @@ Vector6 Pose3::adjointTranspose(const Vector6& xi, const Vector6& y,
|
|||
Hxi->col(i) = GTi * y;
|
||||
}
|
||||
}
|
||||
return adjointMap(xi).transpose() * y;
|
||||
const Matrix6& adT_xi = adjointMap(xi).transpose();
|
||||
if (H_y) *H_y = adT_xi;
|
||||
return adT_xi * y;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
@ -177,13 +177,14 @@ public:
|
|||
* and its inverse transpose in the discrete Euler Poincare' (DEP) operator.
|
||||
*
|
||||
*/
|
||||
static Matrix6 adjointMap(const Vector6 &xi);
|
||||
static Matrix6 adjointMap(const Vector6& xi);
|
||||
|
||||
/**
|
||||
* Action of the adjointMap on a Lie-algebra vector y, with optional derivatives
|
||||
*/
|
||||
static Vector6 adjoint(const Vector6 &xi, const Vector6 &y,
|
||||
OptionalJacobian<6, 6> Hxi = boost::none);
|
||||
static Vector6 adjoint(const Vector6& xi, const Vector6& y,
|
||||
OptionalJacobian<6, 6> Hxi = boost::none,
|
||||
OptionalJacobian<6, 6> H_y = boost::none);
|
||||
|
||||
// temporary fix for wrappers until case issue is resolved
|
||||
static Matrix6 adjointMap_(const Vector6 &xi) { return adjointMap(xi);}
|
||||
|
@ -193,7 +194,8 @@ public:
|
|||
* The dual version of adjoint action, acting on the dual space of the Lie-algebra vector space.
|
||||
*/
|
||||
static Vector6 adjointTranspose(const Vector6& xi, const Vector6& y,
|
||||
OptionalJacobian<6, 6> Hxi = boost::none);
|
||||
OptionalJacobian<6, 6> Hxi = boost::none,
|
||||
OptionalJacobian<6, 6> H_y = boost::none);
|
||||
|
||||
/// Derivative of Expmap
|
||||
static Matrix6 ExpmapDerivative(const Vector6& xi);
|
||||
|
|
|
@ -473,6 +473,9 @@ class Pose3 {
|
|||
Vector logmap(const gtsam::Pose3& pose);
|
||||
Matrix AdjointMap() const;
|
||||
Vector Adjoint(Vector xi) const;
|
||||
Vector AdjointTranspose(Vector xi) const;
|
||||
static Matrix adjointMap(Vector xi);
|
||||
static Vector adjoint(Vector xi, Vector y);
|
||||
static Matrix adjointMap_(Vector xi);
|
||||
static Vector adjoint_(Vector xi, Vector y);
|
||||
static Vector adjointTranspose(Vector xi, Vector y);
|
||||
|
|
|
@ -912,16 +912,20 @@ Vector6 testDerivAdjoint(const Vector6& xi, const Vector6& v) {
|
|||
}
|
||||
|
||||
TEST( Pose3, adjoint) {
|
||||
Vector expected = testDerivAdjoint(screwPose3::xi, screwPose3::xi);
|
||||
Vector6 v = (Vector6() << 1, 2, 3, 4, 5, 6).finished();
|
||||
Vector expected = testDerivAdjoint(screwPose3::xi, v);
|
||||
|
||||
Matrix actualH;
|
||||
Vector actual = Pose3::adjoint(screwPose3::xi, screwPose3::xi, actualH);
|
||||
Matrix actualH1, actualH2;
|
||||
Vector actual = Pose3::adjoint(screwPose3::xi, v, actualH1, actualH2);
|
||||
|
||||
Matrix numericalH = numericalDerivative21<Vector6, Vector6, Vector6>(
|
||||
testDerivAdjoint, screwPose3::xi, screwPose3::xi, 1e-5);
|
||||
Matrix numericalH1 = numericalDerivative21<Vector6, Vector6, Vector6>(
|
||||
testDerivAdjoint, screwPose3::xi, v, 1e-5);
|
||||
Matrix numericalH2 = numericalDerivative22<Vector6, Vector6, Vector6>(
|
||||
testDerivAdjoint, screwPose3::xi, v, 1e-5);
|
||||
|
||||
EXPECT(assert_equal(expected,actual,1e-5));
|
||||
EXPECT(assert_equal(numericalH,actualH,1e-5));
|
||||
EXPECT(assert_equal(numericalH1,actualH1,1e-5));
|
||||
EXPECT(assert_equal(numericalH2,actualH2,1e-5));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
@ -934,14 +938,17 @@ TEST( Pose3, adjointTranspose) {
|
|||
Vector v = (Vector(6) << 0.04, 0.05, 0.06, 4.0, 5.0, 6.0).finished();
|
||||
Vector expected = testDerivAdjointTranspose(xi, v);
|
||||
|
||||
Matrix actualH;
|
||||
Vector actual = Pose3::adjointTranspose(xi, v, actualH);
|
||||
Matrix actualH1, actualH2;
|
||||
Vector actual = Pose3::adjointTranspose(xi, v, actualH1, actualH2);
|
||||
|
||||
Matrix numericalH = numericalDerivative21<Vector6, Vector6, Vector6>(
|
||||
Matrix numericalH1 = numericalDerivative21<Vector6, Vector6, Vector6>(
|
||||
testDerivAdjointTranspose, xi, v, 1e-5);
|
||||
Matrix numericalH2 = numericalDerivative22<Vector6, Vector6, Vector6>(
|
||||
testDerivAdjointTranspose, xi, v, 1e-5);
|
||||
|
||||
EXPECT(assert_equal(expected,actual,1e-15));
|
||||
EXPECT(assert_equal(numericalH,actualH,1e-5));
|
||||
EXPECT(assert_equal(numericalH1,actualH1,1e-5));
|
||||
EXPECT(assert_equal(numericalH2,actualH2,1e-5));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
@ -59,8 +59,16 @@ class TestPose3(GtsamTestCase):
|
|||
self.assertEqual(math.sqrt(2.0), x1.range(pose=xl2))
|
||||
|
||||
def test_adjoint(self):
|
||||
"""Test adjoint method."""
|
||||
"""Test adjoint methods."""
|
||||
T = Pose3()
|
||||
xi = np.array([1, 2, 3, 4, 5, 6])
|
||||
# test calling functions
|
||||
T.AdjointMap()
|
||||
T.Adjoint(xi)
|
||||
T.AdjointTranspose(xi)
|
||||
Pose3.adjointMap(xi)
|
||||
Pose3.adjoint(xi, xi)
|
||||
# test correctness of adjoint(x, y)
|
||||
expected = np.dot(Pose3.adjointMap_(xi), xi)
|
||||
actual = Pose3.adjoint_(xi, xi)
|
||||
np.testing.assert_array_equal(actual, expected)
|
||||
|
|
Loading…
Reference in New Issue