updates in SmartProjectionFactor: first working version with full and block version producing the same results (non-optimized)
							parent
							
								
									2e085ace91
								
							
						
					
					
						commit
						482c5df647
					
				|  | @ -13,9 +13,8 @@ | |||
|  * @file ProjectionFactor.h | ||||
|  * @brief Basic bearing factor from 2D measurement | ||||
|  * @author Chris Beall | ||||
|  * @author Richard Roberts | ||||
|  * @author Frank Dellaert | ||||
|  * @author Alex Cunningham | ||||
|  * @author Luca Carlone | ||||
|  * @author Zsolt Kira | ||||
|  */ | ||||
| 
 | ||||
| #pragma once | ||||
|  | @ -23,6 +22,7 @@ | |||
| #include <gtsam/nonlinear/NonlinearFactor.h> | ||||
| #include <gtsam/geometry/PinholeCamera.h> | ||||
| #include <gtsam/geometry/Pose3.h> | ||||
| #include <vector> | ||||
| #include <gtsam_unstable/geometry/triangulation.h> | ||||
| #include <boost/optional.hpp> | ||||
| #include <boost/assign.hpp> | ||||
|  | @ -30,8 +30,7 @@ | |||
| namespace gtsam { | ||||
| 
 | ||||
|   /**
 | ||||
|    * Non-linear factor for a constraint derived from a 2D measurement. The calibration is known here. | ||||
|    * i.e. the main building block for visual SLAM. | ||||
|    * The calibration is known here. | ||||
|    * @addtogroup SLAM | ||||
|    */ | ||||
|   template<class POSE, class LANDMARK, class CALIBRATION = Cal3_S2> | ||||
|  | @ -39,7 +38,7 @@ namespace gtsam { | |||
|   protected: | ||||
| 
 | ||||
|     // Keep a copy of measurement and calibration for I/O
 | ||||
|     std::vector<Point2> measured_;                    ///< 2D measurement for each of the n views
 | ||||
|     std::vector<Point2> measured_;                    ///< 2D measurement for each of the m views
 | ||||
|     ///< (important that the order is the same as the keys that we use to create the factor)
 | ||||
|     boost::shared_ptr<CALIBRATION> K_;  ///< shared pointer to calibration object
 | ||||
|     const SharedNoiseModel noise_;   ///< noise model used
 | ||||
|  | @ -68,7 +67,7 @@ namespace gtsam { | |||
|     /**
 | ||||
|      * Constructor | ||||
|      * TODO: Mark argument order standard (keys, measurement, parameters) | ||||
|      * @param measured is the 2n dimensional location of the n points in the n views (the measurements) | ||||
|      * @param measured is the 2m dimensional location of the projection of a single landmark in the m views (the measurements) | ||||
|      * @param model is the standard deviation (current version assumes that the uncertainty is the same for all views) | ||||
|      * @param poseKeys is the set of indices corresponding to the cameras observing the same landmark | ||||
|      * @param K shared pointer to the constant calibration | ||||
|  | @ -85,9 +84,9 @@ namespace gtsam { | |||
|     /**
 | ||||
|      * Constructor with exception-handling flags | ||||
|      * TODO: Mark argument order standard (keys, measurement, parameters) | ||||
|      * @param measured is the 2 dimensional location of point in image (the measurement) | ||||
|      * @param model is the standard deviation | ||||
|      * @param poseKey is the index of the camera | ||||
|      * @param measured is the 2m dimensional location of the projection of a single landmark in the m views (the measurements) | ||||
|      * @param model is the standard deviation (current version assumes that the uncertainty is the same for all views) | ||||
|      * @param poseKeys is the set of indices corresponding to the cameras observing the same landmark | ||||
|      * @param K shared pointer to the constant calibration | ||||
|      * @param throwCheirality determines whether Cheirality exceptions are rethrown | ||||
|      * @param verboseCheirality determines whether exceptions are printed for Cheirality | ||||
|  | @ -141,39 +140,6 @@ namespace gtsam { | |||
|           && ((!body_P_sensor_ && !e->body_P_sensor_) || (body_P_sensor_ && e->body_P_sensor_ && body_P_sensor_->equals(*e->body_P_sensor_))); | ||||
|     } | ||||
| 
 | ||||
| //    /// Evaluate error h(x)-z and optionally derivatives
 | ||||
| //    Vector unwhitenedError(const Values& x, boost::optional<std::vector<Matrix>&> H = boost::none) const{
 | ||||
| //
 | ||||
| //      Vector a;
 | ||||
| //      return a;
 | ||||
| //
 | ||||
| ////      Point3 point = x.at<Point3>(*keys_.end());
 | ||||
| ////
 | ||||
| ////      std::vector<KeyType>::iterator vit;
 | ||||
| ////      for (vit = keys_.begin(); vit != keys_.end()-1; vit++) {
 | ||||
| ////        Key key = (*vit);
 | ||||
| ////        Pose3 pose = x.at<Pose3>(key);
 | ||||
| ////
 | ||||
| ////        if(body_P_sensor_) {
 | ||||
| ////          if(H1) {
 | ||||
| ////            gtsam::Matrix H0;
 | ||||
| ////            PinholeCamera<CALIBRATION> camera(pose.compose(*body_P_sensor_, H0), *K_);
 | ||||
| ////            Point2 reprojectionError(camera.project(point, H1, H2) - measured_);
 | ||||
| ////            *H1 = *H1 * H0;
 | ||||
| ////            return reprojectionError.vector();
 | ||||
| ////          } else {
 | ||||
| ////            PinholeCamera<CALIBRATION> camera(pose.compose(*body_P_sensor_), *K_);
 | ||||
| ////            Point2 reprojectionError(camera.project(point, H1, H2) - measured_);
 | ||||
| ////            return reprojectionError.vector();
 | ||||
| ////          }
 | ||||
| ////        } else {
 | ||||
| ////          PinholeCamera<CALIBRATION> camera(pose, *K_);
 | ||||
| ////          Point2 reprojectionError(camera.project(point, H1, H2) - measured_);
 | ||||
| ////          return reprojectionError.vector();
 | ||||
| ////        }
 | ||||
| ////      }
 | ||||
| //
 | ||||
| //    }
 | ||||
| 
 | ||||
|     /// get the dimension of the factor (number of rows on linearization)
 | ||||
|     virtual size_t dim() const { | ||||
|  | @ -183,24 +149,25 @@ namespace gtsam { | |||
|     /// linearize returns a Hessianfactor that is an approximation of error(p)
 | ||||
|     virtual boost::shared_ptr<GaussianFactor> linearize(const Values& values,  const Ordering& ordering) const { | ||||
| 
 | ||||
| //      std::cout.precision(20);
 | ||||
| 
 | ||||
| 
 | ||||
|       // Collect all poses (Cameras)
 | ||||
|       std::vector<Pose3> cameraPoses; | ||||
| 
 | ||||
|       BOOST_FOREACH(const Key& k, keys_) { | ||||
|         if(body_P_sensor_) | ||||
|           cameraPoses.push_back(values.at<Pose3>(k).compose(*body_P_sensor_)); | ||||
|         else | ||||
|           cameraPoses.push_back(values.at<Pose3>(k)); | ||||
|       } | ||||
|             // We triangulate the 3D position of the landmark
 | ||||
| 
 | ||||
|       // We triangulate the 3D position of the landmark
 | ||||
|       boost::optional<Point3> point = triangulatePoint3(cameraPoses, measured_, *K_); | ||||
| 
 | ||||
|       if (!point) | ||||
|         return HessianFactor::shared_ptr(new HessianFactor()); | ||||
| 
 | ||||
|       std::cout << "point " << *point << std::endl; | ||||
| 
 | ||||
| 
 | ||||
|       std::vector<Matrix> Gs(keys_.size()*(keys_.size()+1)/2); | ||||
|       std::vector<Vector> gs(keys_.size()); | ||||
|       double f = 0; | ||||
|  | @ -220,11 +187,10 @@ namespace gtsam { | |||
| 
 | ||||
|         for(size_t i = 0; i < measured_.size(); i++) { | ||||
|           Pose3 pose = cameraPoses.at(i); | ||||
| 
 | ||||
|           std::cout << "pose " << pose << std::endl; | ||||
| 
 | ||||
|           PinholeCamera<CALIBRATION> camera(pose, *K_); | ||||
|           b.at(i) = ( camera.project(*point,Hx.at(i),Hl.at(i)) - measured_.at(i) ).vector(); | ||||
| //          std::cout << "b.at(i)  " << b.at(i)  << std::endl;
 | ||||
|         } | ||||
| 
 | ||||
|         // Shur complement trick
 | ||||
|  | @ -233,16 +199,27 @@ namespace gtsam { | |||
|         std::vector< std::vector<Matrix> > Hxl(keys_.size(), std::vector<Matrix>( keys_.size())); | ||||
| 
 | ||||
|         // Allocate inv(Hl'Hl)
 | ||||
|         Matrix3 C; | ||||
|         Matrix3 C = zeros(3,3); | ||||
|         for(size_t i1 = 0; i1 < keys_.size(); i1++) { | ||||
|           C += Hl.at(i1).transpose() * Hl.at(i1); | ||||
|         } | ||||
|         C = C.inverse(); | ||||
| //        std::cout << "Cnoinv"<< "=[" << Ctemp << "];" << std::endl;
 | ||||
| 
 | ||||
|         C = C.inverse().eval(); //  this is very important: without eval, because of eigen aliasing the results will be incorrect
 | ||||
| 
 | ||||
| 
 | ||||
|         // Calculate sub blocks
 | ||||
|         for(size_t i1 = 0; i1 < keys_.size(); i1++) { | ||||
|           for(size_t i2 = 0; i2 < keys_.size(); i2++) { | ||||
|             // we only need the upper triangular entries
 | ||||
|             Hxl[i1][i2] = Hx.at(i1).transpose() * Hl.at(i1) * C * Hl.at(i2).transpose(); | ||||
|             if (i1==0 & i2==0){ | ||||
|             std::cout << "Hoff"<< i1 << i2 << "=[" << Hx.at(i1).transpose() * Hl.at(i1) * C * Hl.at(i2).transpose() << "];" << std::endl; | ||||
|             std::cout << "Hxoff"<< "=[" << Hx.at(i1) << "];" << std::endl; | ||||
|             std::cout << "Hloff"<< "=[" << Hl.at(i1) << "];" << std::endl; | ||||
|             std::cout << "Hloff2"<< "=[" << Hl.at(i2) << "];" << std::endl; | ||||
|             std::cout << "C"<< "=[" << C << "];" << std::endl; | ||||
|             } | ||||
|           } | ||||
|         } | ||||
|         // Populate Gs and gs
 | ||||
|  | @ -251,14 +228,26 @@ namespace gtsam { | |||
|           gs.at(i1) = Hx.at(i1).transpose() * b.at(i1); | ||||
| 
 | ||||
|           for(size_t i2 = 0; i2 < keys_.size(); i2++) { | ||||
|             gs.at(i1) += Hxl[i1][i2] * b.at(i2); | ||||
|             gs.at(i1) -= Hxl[i1][i2] * b.at(i2); | ||||
| 
 | ||||
|             if (i2 >= i1) { | ||||
|             if (i2 == i1){ | ||||
|               Gs.at(GsCount) = Hx.at(i1).transpose() * Hx.at(i1) - Hxl[i1][i2] * Hx.at(i2); | ||||
|               std::cout << "HxlH"<< GsCount << "=[" << Hxl[i1][i2] * Hx.at(i2) << "];" << std::endl; | ||||
|               std::cout << "Hx2_"<< GsCount << "=[" << Hx.at(i2) << "];" << std::endl; | ||||
|               std::cout << "H"<< GsCount << "=[" << Gs.at(GsCount) << "];" << std::endl; | ||||
|               GsCount++; | ||||
|             } | ||||
|             if (i2 > i1) { | ||||
|               Gs.at(GsCount) = - Hxl[i1][i2] * Hx.at(i2); | ||||
|               std::cout << "HxlH"<< GsCount << "=[" << Hxl[i1][i2] * Hx.at(i2) << "];" << std::endl; | ||||
|               std::cout << "Hx2_"<< GsCount << "=[" << Hx.at(i2) << "];" << std::endl; | ||||
|               std::cout << "H"<< GsCount << "=[" << Gs.at(GsCount) << "];" << std::endl; | ||||
|               GsCount++; | ||||
|             } | ||||
|           } | ||||
|         } | ||||
| 
 | ||||
| //        std::cout << "GsCount  " << GsCount << std::endl;
 | ||||
| //      }
 | ||||
| 
 | ||||
|       // debug only
 | ||||
|  | @ -278,22 +267,39 @@ namespace gtsam { | |||
|            Vector bi = ( camera.project(*point,Hxi,Hli) - measured_.at(i) ).vector(); | ||||
|            Hx2.block( 2*i, 6*i, 2, 6 ) = Hxi; | ||||
|            Hl2.block( 2*i, 0, 2, 3  ) = Hli; | ||||
| //           std::cout << "Hxi= \n" << Hxi << std::endl;
 | ||||
| //           std::cout << "Hxi.transpose() * Hxi= \n" << Hxi.transpose() * Hxi << std::endl;
 | ||||
| //           std::cout << "Hxl.transpose() * Hxl= \n" << Hli.transpose() * Hli << std::endl;
 | ||||
|            subInsert(b2,bi,2*i); | ||||
| 
 | ||||
|            std::cout << "Hx " << Hx2 << std::endl; | ||||
|            std::cout << "Hl " << Hl2 << std::endl; | ||||
|            std::cout << "b " << b2.transpose() << std::endl; | ||||
|            std::cout << "Hxi - Hx.at(i) " << Hxi - Hx.at(i) << std::endl; | ||||
|            std::cout << "Hli - Hl.at(i) " << Hli - Hl.at(i) << std::endl; | ||||
| //           std::cout << "================= measurement " << i << std::endl;
 | ||||
| //           std::cout << "Hx " << Hx2 << std::endl;
 | ||||
| //           std::cout << "Hl " << Hl2 << std::endl;
 | ||||
| //           std::cout << "b " << b2.transpose() << std::endl;
 | ||||
| //           std::cout << "b.at(i)  " << b.at(i)  << std::endl;
 | ||||
| //           std::cout << "Hxi - Hx.at(i) " << Hxi - Hx.at(i) << std::endl;
 | ||||
| //           std::cout << "Hli - Hl.at(i) " << Hli - Hl.at(i) << std::endl;
 | ||||
|         } | ||||
| 
 | ||||
|         // Shur complement trick
 | ||||
|         Matrix H(6*keys_.size(), 6*keys_.size()); | ||||
|         Matrix3 C2 = (Hl2.transpose() * Hl2).inverse(); | ||||
|         H = Hx2.transpose() * Hx2 - Hx2.transpose() * Hl2 * C2 * Hl2.transpose() * Hx2; | ||||
| 
 | ||||
|         std::cout << "Hx2" << "=[" << Hx2 << "];" << std::endl; | ||||
|         std::cout << "Hl2" << "=[" << Hl2 << "];" << std::endl; | ||||
|         std::cout << "H" << "=[" << H << "];" << std::endl; | ||||
| 
 | ||||
| 
 | ||||
|         std::cout << "Cnoinv2"<< "=[" << Hl2.transpose() * Hl2 << "];" << std::endl; | ||||
|         std::cout << "C2"<< "=[" << C2 << "];" << std::endl; | ||||
| 
 | ||||
| //        std::cout << "Hx2= \n" << Hx2 << std::endl;
 | ||||
| //        std::cout << "Hx2.transpose() * Hx2= \n" << Hx2.transpose() * Hx2 << std::endl;
 | ||||
| 
 | ||||
|         Vector gs2_vector =  Hx2.transpose() * b2 -  Hx2.transpose() * Hl2 * C2 * Hl2.transpose() * b2; | ||||
| 
 | ||||
|         std::cout << "C - C2 " << C - C2 << std::endl; | ||||
|         std::cout << "================================================================================"  << std::endl; | ||||
| 
 | ||||
|         // Populate Gs and gs
 | ||||
|         int GsCount2 = 0; | ||||
|  | @ -308,7 +314,7 @@ namespace gtsam { | |||
|           } | ||||
|         } | ||||
| //      }
 | ||||
| 
 | ||||
| //
 | ||||
|       // Compare blockwise and full version
 | ||||
|       bool gs2_equal_gs = true; | ||||
|       for(size_t i = 0; i < measured_.size(); i++) { | ||||
|  | @ -319,12 +325,18 @@ namespace gtsam { | |||
|           gs2_equal_gs = false; | ||||
|         } | ||||
|       } | ||||
| 
 | ||||
|       std::cout << "gs2_equal_gs " << gs2_equal_gs << std::endl; | ||||
| 
 | ||||
|       for(size_t i = 0; i < keys_.size()*(keys_.size()+1)/2; i++) { | ||||
|         std::cout << "Gs.at(i) " << Gs.at(i).transpose() << std::endl; | ||||
|         std::cout << "Gs2.at(i) " << Gs2.at(i).transpose() << std::endl; | ||||
|         std::cout << "Gs.error  " << (Gs.at(i)- Gs2.at(i)).transpose() << std::endl; | ||||
|       } | ||||
|       std::cout << "Gs2_equal_Gs " << gs2_equal_gs << std::endl; | ||||
| 
 | ||||
| 
 | ||||
|       // ==========================================================================================================
 | ||||
|       return HessianFactor::shared_ptr(new HessianFactor(js, Gs2, gs2, f)); | ||||
|       return HessianFactor::shared_ptr(new HessianFactor(js, Gs, gs, f)); | ||||
|     } | ||||
| 
 | ||||
|     /**
 | ||||
|  |  | |||
|  | @ -226,12 +226,14 @@ TEST( MultiProjectionFactor, 3poses ){ | |||
|   graph.add(PriorFactor<Pose3>(x1, pose1, noisePrior)); | ||||
|   graph.add(PriorFactor<Pose3>(x2, pose2, noisePrior)); | ||||
| 
 | ||||
| //  smartFactor1->print("smartFactor1");
 | ||||
| 
 | ||||
|   Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3)); | ||||
| 
 | ||||
|   Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/100, 0., -M_PI/100), gtsam::Point3(0.1,0.1,0.1)); | ||||
|   Values values; | ||||
|   values.insert(x1, pose1); | ||||
|   values.insert(x2, pose2); | ||||
|   values.insert(x3, pose3* noise_pose); | ||||
|   values.insert(x2, pose2*noise_pose); | ||||
|   values.insert(x3, pose3); | ||||
| 
 | ||||
|   LevenbergMarquardtParams params; | ||||
|   params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA; | ||||
|  | @ -244,7 +246,7 @@ TEST( MultiProjectionFactor, 3poses ){ | |||
| } | ||||
| 
 | ||||
| 
 | ||||
| ///* ************************************************************************* */
 | ||||
| /* *************************************************************************
 | ||||
| TEST( MultiProjectionFactor, 3poses_projection_factor ){ | ||||
|   cout << " ************************ Normal ProjectionFactor: 3 cams + 3 landmarks **********************" << endl; | ||||
| 
 | ||||
|  |  | |||
		Loading…
	
		Reference in New Issue