HybridSmoother tests

release/4.3a0
Varun Agrawal 2025-01-21 16:33:48 -05:00
parent fff828f599
commit 47f47fedc1
2 changed files with 177 additions and 97 deletions

View File

@ -115,103 +115,6 @@ TEST(HybridEstimation, Full) {
EXPECT(assert_equal(expected_continuous, result));
}
/****************************************************************************/
// Test approximate inference with an additional pruning step.
TEST(HybridEstimation, IncrementalSmoother) {
using namespace estimation_fixture;
size_t K = 15;
// Switching example of robot moving in 1D
// with given measurements and equal mode priors.
HybridNonlinearFactorGraph graph;
Values initial;
Switching switching = InitializeEstimationProblem(K, 1.0, 0.1, measurements,
"1/1 1/1", graph, initial);
HybridSmoother smoother;
HybridGaussianFactorGraph linearized;
constexpr size_t maxNrLeaves = 3;
for (size_t k = 1; k < K; k++) {
if (k > 1) graph.push_back(switching.modeChain.at(k - 1)); // Mode chain
graph.push_back(switching.binaryFactors.at(k - 1)); // Motion Model
graph.push_back(switching.unaryFactors.at(k)); // Measurement
initial.insert(X(k), switching.linearizationPoint.at<double>(X(k)));
linearized = *graph.linearize(initial);
Ordering ordering = smoother.getOrdering(linearized);
smoother.update(linearized, maxNrLeaves, ordering);
graph.resize(0);
}
HybridValues delta = smoother.hybridBayesNet().optimize();
Values result = initial.retract(delta.continuous());
DiscreteValues expected_discrete;
for (size_t k = 0; k < K - 1; k++) {
expected_discrete[M(k)] = discrete_seq[k];
}
EXPECT(assert_equal(expected_discrete, delta.discrete()));
Values expected_continuous;
for (size_t k = 0; k < K; k++) {
expected_continuous.insert(X(k), measurements[k]);
}
EXPECT(assert_equal(expected_continuous, result));
}
/****************************************************************************/
// Test if pruned factor is set to correct error and no errors are thrown.
TEST(HybridEstimation, ValidPruningError) {
using namespace estimation_fixture;
size_t K = 8;
HybridNonlinearFactorGraph graph;
Values initial;
Switching switching = InitializeEstimationProblem(K, 1e-2, 1e-3, measurements,
"1/1 1/1", graph, initial);
HybridSmoother smoother;
HybridGaussianFactorGraph linearized;
constexpr size_t maxNrLeaves = 3;
for (size_t k = 1; k < K; k++) {
if (k > 1) graph.push_back(switching.modeChain.at(k - 1)); // Mode chain
graph.push_back(switching.binaryFactors.at(k - 1)); // Motion Model
graph.push_back(switching.unaryFactors.at(k)); // Measurement
initial.insert(X(k), switching.linearizationPoint.at<double>(X(k)));
linearized = *graph.linearize(initial);
Ordering ordering = smoother.getOrdering(linearized);
smoother.update(linearized, maxNrLeaves, ordering);
graph.resize(0);
}
HybridValues delta = smoother.hybridBayesNet().optimize();
Values result = initial.retract(delta.continuous());
DiscreteValues expected_discrete;
for (size_t k = 0; k < K - 1; k++) {
expected_discrete[M(k)] = discrete_seq[k];
}
EXPECT(assert_equal(expected_discrete, delta.discrete()));
Values expected_continuous;
for (size_t k = 0; k < K; k++) {
expected_continuous.insert(X(k), measurements[k]);
}
EXPECT(assert_equal(expected_continuous, result));
}
/****************************************************************************/
// Test approximate inference with an additional pruning step.
TEST(HybridEstimation, ISAM) {

View File

@ -0,0 +1,177 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testHybridSmoother.cpp
* @brief Unit tests for HybridSmoother
* @author Varun Agrawal
*/
#include <gtsam/discrete/DiscreteBayesNet.h>
#include <gtsam/hybrid/HybridNonlinearFactorGraph.h>
#include <gtsam/hybrid/HybridNonlinearISAM.h>
#include <gtsam/hybrid/HybridSmoother.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/linear/GaussianBayesNet.h>
#include <gtsam/linear/GaussianBayesTree.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/JacobianFactor.h>
#include <gtsam/linear/NoiseModel.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/PriorFactor.h>
#include <gtsam/slam/BetweenFactor.h>
// Include for test suite
#include <CppUnitLite/TestHarness.h>
#include <string>
#include "Switching.h"
using namespace std;
using namespace gtsam;
using symbol_shorthand::X;
using symbol_shorthand::Z;
namespace estimation_fixture {
std::vector<double> measurements = {0, 1, 2, 2, 2, 2, 3, 4, 5, 6, 6,
7, 8, 9, 9, 9, 10, 11, 11, 11, 11};
// Ground truth discrete seq
std::vector<size_t> discrete_seq = {1, 1, 0, 0, 0, 1, 1, 1, 1, 0,
1, 1, 1, 0, 0, 1, 1, 0, 0, 0};
Switching InitializeEstimationProblem(
const size_t K, const double between_sigma, const double measurement_sigma,
const std::vector<double>& measurements,
const std::string& transitionProbabilityTable,
HybridNonlinearFactorGraph* graph, Values* initial) {
Switching switching(K, between_sigma, measurement_sigma, measurements,
transitionProbabilityTable);
// Add prior on M(0)
graph->push_back(switching.modeChain.at(0));
// Add the X(0) prior
graph->push_back(switching.unaryFactors.at(0));
initial->insert(X(0), switching.linearizationPoint.at<double>(X(0)));
return switching;
}
} // namespace estimation_fixture
/****************************************************************************/
// Test approximate inference with an additional pruning step.
TEST(HybridSmoother, IncrementalSmoother) {
using namespace estimation_fixture;
size_t K = 5;
// Switching example of robot moving in 1D
// with given measurements and equal mode priors.
HybridNonlinearFactorGraph graph;
Values initial;
Switching switching = InitializeEstimationProblem(
K, 1.0, 0.1, measurements, "1/1 1/1", &graph, &initial);
HybridSmoother smoother;
constexpr size_t maxNrLeaves = 5;
// Loop over timesteps from 1...K-1
for (size_t k = 1; k < K; k++) {
if (k > 1) graph.push_back(switching.modeChain.at(k - 1)); // Mode chain
graph.push_back(switching.binaryFactors.at(k - 1)); // Motion Model
graph.push_back(switching.unaryFactors.at(k)); // Measurement
initial.insert(X(k), switching.linearizationPoint.at<double>(X(k)));
HybridGaussianFactorGraph linearized = *graph.linearize(initial);
Ordering ordering = smoother.getOrdering(linearized);
smoother.update(linearized, maxNrLeaves, ordering);
// Clear all the factors from the graph
graph.resize(0);
}
EXPECT_LONGS_EQUAL(11,
smoother.hybridBayesNet().at(0)->asDiscrete()->nrValues());
// Get the continuous delta update as well as
// the optimal discrete assignment.
HybridValues delta = smoother.hybridBayesNet().optimize();
// Check discrete assignment
DiscreteValues expected_discrete;
for (size_t k = 0; k < K - 1; k++) {
expected_discrete[M(k)] = discrete_seq[k];
}
EXPECT(assert_equal(expected_discrete, delta.discrete()));
// Update nonlinear solution and verify
Values result = initial.retract(delta.continuous());
Values expected_continuous;
for (size_t k = 0; k < K; k++) {
expected_continuous.insert(X(k), measurements[k]);
}
EXPECT(assert_equal(expected_continuous, result));
}
/****************************************************************************/
// Test if pruned Bayes net is set to correct error and no errors are thrown.
TEST(HybridSmoother, ValidPruningError) {
using namespace estimation_fixture;
size_t K = 8;
// Switching example of robot moving in 1D
// with given measurements and equal mode priors.
HybridNonlinearFactorGraph graph;
Values initial;
Switching switching = InitializeEstimationProblem(
K, 0.1, 0.1, measurements, "1/1 1/1", &graph, &initial);
HybridSmoother smoother;
constexpr size_t maxNrLeaves = 3;
for (size_t k = 1; k < K; k++) {
if (k > 1) graph.push_back(switching.modeChain.at(k - 1)); // Mode chain
graph.push_back(switching.binaryFactors.at(k - 1)); // Motion Model
graph.push_back(switching.unaryFactors.at(k)); // Measurement
initial.insert(X(k), switching.linearizationPoint.at<double>(X(k)));
HybridGaussianFactorGraph linearized = *graph.linearize(initial);
Ordering ordering = smoother.getOrdering(linearized);
smoother.update(linearized, maxNrLeaves, ordering);
// Clear all the factors from the graph
graph.resize(0);
}
EXPECT_LONGS_EQUAL(14,
smoother.hybridBayesNet().at(0)->asDiscrete()->nrValues());
// Get the continuous delta update as well as
// the optimal discrete assignment.
HybridValues delta = smoother.hybridBayesNet().optimize();
auto errorTree = smoother.hybridBayesNet().errorTree(delta.continuous());
EXPECT_DOUBLES_EQUAL(0.0, errorTree(delta.discrete()), 1e-8);
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */