Moved and refactored testing
parent
e413fb3d68
commit
4790bade85
|
@ -524,71 +524,5 @@ inline Matrix numericalHessian323(double (*f)(const X1&, const X2&, const X3&),
|
|||
delta);
|
||||
}
|
||||
|
||||
// The benefit of this method is that it does not need to know what types are involved
|
||||
// to evaluate the factor. If all the machinery of gtsam is working correctly, we should
|
||||
// get the correct numerical derivatives out the other side.
|
||||
template<typename FactorType>
|
||||
JacobianFactor computeNumericalDerivativeJacobianFactor(const FactorType& factor,
|
||||
const Values& values,
|
||||
double fd_step) {
|
||||
Eigen::VectorXd e = factor.unwhitenedError(values);
|
||||
const size_t rows = e.size();
|
||||
|
||||
std::map<Key, Matrix> jacobians;
|
||||
typename FactorType::const_iterator key_it = factor.begin();
|
||||
VectorValues dX = values.zeroVectors();
|
||||
for(; key_it != factor.end(); ++key_it) {
|
||||
size_t key = *key_it;
|
||||
// Compute central differences using the values struct.
|
||||
const size_t cols = dX.dim(key);
|
||||
Matrix J = Matrix::Zero(rows, cols);
|
||||
for(size_t col = 0; col < cols; ++col) {
|
||||
Eigen::VectorXd dx = Eigen::VectorXd::Zero(cols);
|
||||
dx[col] = fd_step;
|
||||
dX[key] = dx;
|
||||
Values eval_values = values.retract(dX);
|
||||
Eigen::VectorXd left = factor.unwhitenedError(eval_values);
|
||||
dx[col] = -fd_step;
|
||||
dX[key] = dx;
|
||||
eval_values = values.retract(dX);
|
||||
Eigen::VectorXd right = factor.unwhitenedError(eval_values);
|
||||
J.col(col) = (left - right) * (1.0/(2.0 * fd_step));
|
||||
}
|
||||
jacobians[key] = J;
|
||||
}
|
||||
|
||||
// Next step...return JacobianFactor
|
||||
return JacobianFactor(jacobians, -e);
|
||||
}
|
||||
|
||||
template<typename FactorType>
|
||||
void testFactorJacobians(TestResult& result_,
|
||||
const std::string& name_,
|
||||
const FactorType& f,
|
||||
const gtsam::Values& values,
|
||||
double fd_step,
|
||||
double tolerance) {
|
||||
// Check linearization
|
||||
JacobianFactor expected = computeNumericalDerivativeJacobianFactor(f, values, fd_step);
|
||||
boost::shared_ptr<GaussianFactor> gf = f.linearize(values);
|
||||
boost::shared_ptr<JacobianFactor> jf = //
|
||||
boost::dynamic_pointer_cast<JacobianFactor>(gf);
|
||||
|
||||
typedef std::pair<Eigen::MatrixXd, Eigen::VectorXd> Jacobian;
|
||||
Jacobian evalJ = jf->jacobianUnweighted();
|
||||
Jacobian estJ = expected.jacobianUnweighted();
|
||||
EXPECT(assert_equal(evalJ.first, estJ.first, tolerance));
|
||||
EXPECT(assert_equal(evalJ.second, Eigen::VectorXd::Zero(evalJ.second.size()), tolerance));
|
||||
EXPECT(assert_equal(estJ.second, Eigen::VectorXd::Zero(evalJ.second.size()), tolerance));
|
||||
}
|
||||
|
||||
} // namespace gtsam
|
||||
|
||||
/// \brief Check the Jacobians produced by a factor against finite differences.
|
||||
/// \param factor The factor to test.
|
||||
/// \param values Values filled in for testing the Jacobians.
|
||||
/// \param numerical_derivative_step The step to use when computing the numerical derivative Jacobians
|
||||
/// \param tolerance The numerical tolerance to use when comparing Jacobians.
|
||||
#define EXPECT_CORRECT_FACTOR_JACOBIANS(factor, values, numerical_derivative_step, tolerance) \
|
||||
{ gtsam::testFactorJacobians(result_, name_, factor, values, numerical_derivative_step, tolerance); }
|
||||
|
||||
|
|
|
@ -30,19 +30,88 @@
|
|||
|
||||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* Linearize a nonlinear factor using numerical differentiation
|
||||
* The benefit of this method is that it does not need to know what types are
|
||||
* involved to evaluate the factor. If all the machinery of gtsam is working
|
||||
* correctly, we should get the correct numerical derivatives out the other side.
|
||||
*/
|
||||
JacobianFactor linearizeNumerically(const NoiseModelFactor& factor,
|
||||
const Values& values, double delta = 1e-5) {
|
||||
|
||||
// We will fill a map of Jacobians
|
||||
std::map<Key, Matrix> jacobians;
|
||||
|
||||
// Get size
|
||||
Eigen::VectorXd e = factor.whitenedError(values);
|
||||
const size_t rows = e.size();
|
||||
|
||||
// Loop over all variables
|
||||
VectorValues dX = values.zeroVectors();
|
||||
BOOST_FOREACH(Key key, factor) {
|
||||
// Compute central differences using the values struct.
|
||||
const size_t cols = dX.dim(key);
|
||||
Matrix J = Matrix::Zero(rows, cols);
|
||||
for (size_t col = 0; col < cols; ++col) {
|
||||
Eigen::VectorXd dx = Eigen::VectorXd::Zero(cols);
|
||||
dx[col] = delta;
|
||||
dX[key] = dx;
|
||||
Values eval_values = values.retract(dX);
|
||||
Eigen::VectorXd left = factor.whitenedError(eval_values);
|
||||
dx[col] = -delta;
|
||||
dX[key] = dx;
|
||||
eval_values = values.retract(dX);
|
||||
Eigen::VectorXd right = factor.whitenedError(eval_values);
|
||||
J.col(col) = (left - right) * (1.0 / (2.0 * delta));
|
||||
}
|
||||
jacobians[key] = J;
|
||||
}
|
||||
|
||||
// Next step...return JacobianFactor
|
||||
return JacobianFactor(jacobians, -e);
|
||||
}
|
||||
|
||||
namespace internal {
|
||||
// CPPUnitLite-style test for linearization of a factor
|
||||
void testFactorJacobians(TestResult& result_, const std::string& name_,
|
||||
const NoiseModelFactor& factor, const gtsam::Values& values, double delta,
|
||||
double tolerance) {
|
||||
|
||||
// Create expected value by numerical differentiation
|
||||
JacobianFactor expected = linearizeNumerically(factor, values, delta);
|
||||
|
||||
// Create actual value by linearize
|
||||
boost::shared_ptr<JacobianFactor> actual = //
|
||||
boost::dynamic_pointer_cast<JacobianFactor>(factor.linearize(values));
|
||||
|
||||
// Check cast result and then equality
|
||||
CHECK(actual);
|
||||
EXPECT( assert_equal(expected, *actual, tolerance));
|
||||
}
|
||||
}
|
||||
|
||||
/// \brief Check the Jacobians produced by a factor against finite differences.
|
||||
/// \param factor The factor to test.
|
||||
/// \param values Values filled in for testing the Jacobians.
|
||||
/// \param numerical_derivative_step The step to use when computing the numerical derivative Jacobians
|
||||
/// \param tolerance The numerical tolerance to use when comparing Jacobians.
|
||||
#define EXPECT_CORRECT_FACTOR_JACOBIANS(factor, values, numerical_derivative_step, tolerance) \
|
||||
{ gtsam::internal::testFactorJacobians(result_, name_, factor, values, numerical_derivative_step, tolerance); }
|
||||
|
||||
namespace internal {
|
||||
// CPPUnitLite-style test for linearization of an ExpressionFactor
|
||||
template<typename T>
|
||||
void testExpressionJacobians(TestResult& result_,
|
||||
const std::string& name_,
|
||||
const gtsam::Expression<T>& expression,
|
||||
const gtsam::Values& values,
|
||||
double nd_step,
|
||||
double tolerance) {
|
||||
void testExpressionJacobians(TestResult& result_, const std::string& name_,
|
||||
const gtsam::Expression<T>& expression, const gtsam::Values& values,
|
||||
double nd_step, double tolerance) {
|
||||
// Create factor
|
||||
size_t size = traits::dimension<T>::value;
|
||||
ExpressionFactor<T> f(noiseModel::Unit::Create(size), expression.value(values), expression);
|
||||
ExpressionFactor<T> f(noiseModel::Unit::Create(size),
|
||||
expression.value(values), expression);
|
||||
testFactorJacobians(result_, name_, f, values, nd_step, tolerance);
|
||||
}
|
||||
} // namespace gtsam
|
||||
}
|
||||
} // namespace gtsam
|
||||
|
||||
/// \brief Check the Jacobians produced by an expression against finite differences.
|
||||
/// \param expression The expression to test.
|
||||
|
@ -50,4 +119,4 @@ void testExpressionJacobians(TestResult& result_,
|
|||
/// \param numerical_derivative_step The step to use when computing the finite difference Jacobians
|
||||
/// \param tolerance The numerical tolerance to use when comparing Jacobians.
|
||||
#define EXPECT_CORRECT_EXPRESSION_JACOBIANS(expression, values, numerical_derivative_step, tolerance) \
|
||||
{ gtsam::testExpressionJacobians(result_, name_, expression, values, numerical_derivative_step, tolerance); }
|
||||
{ gtsam::internal::testExpressionJacobians(result_, name_, expression, values, numerical_derivative_step, tolerance); }
|
||||
|
|
Loading…
Reference in New Issue