cleaned up example

release/4.3a0
Luca 2016-06-07 20:36:18 -04:00
parent c9e383e644
commit 46e688bd36
1 changed files with 37 additions and 43 deletions

View File

@ -19,7 +19,7 @@
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/slam/PriorFactor.h>
// A row starting with i is the first inital position formatted with
// A row starting with i is the first initial position formatted with
// N, E, D, qx, qY, qZ, qW, velN, velE, velD
// A row starting with a 0 is an imu measurement
// linAccN, linAccE, linAccD, angVelN, angVelE, angVelD
@ -29,7 +29,7 @@
// rotation is provided for ground truth comparison.
// Uncomment line below to use the CombinedIMUFactor as opposed to the standard ImuFactor.
#define USE_COMBINED
// #define USE_COMBINED
using namespace gtsam;
using namespace Eigen;
@ -54,30 +54,27 @@ int main(int argc, char* argv[])
} else {
data_filename = argv[1];
}
printf("1\n");
// Set up output file for plotting errors
FILE* fp_out = fopen(output_filename.c_str(), "w+");
printf("2\n");
fprintf(fp_out, "#time(s),x(m),y(m),z(m),qx,qy,qz,qw,gt_x(m),gt_y(m),gt_z(m),gt_qx,gt_qy,gt_qz,gt_qw\n");
// Begin parsing the CSV file. Input the first line for initialization.
// From there, we'll iterate through the file and we'll preintegrate the IMU
// or add in the GPS given the input.
std::ifstream file(data_filename.c_str());
std::string value;
ifstream file(data_filename.c_str());
string value;
// Format is (N,E,D,qX,qY,qZ,qW,velN,velE,velD)
Eigen::Matrix<double,10,1> initial_state = Eigen::Matrix<double,10,1>::Zero();
getline(file, value, ','); // i
for (int i=0; i<9; i++) {
getline(file, value, ',');
initial_state(i) = std::atof(value.c_str());
initial_state(i) = atof(value.c_str());
}
getline(file, value, '\n');
initial_state(9) = std::atof(value.c_str());
std::cout << "initial state:\n" << initial_state << "\n\n";
initial_state(9) = atof(value.c_str());
cout << "initial state:\n" << initial_state.transpose() << "\n\n";
// Assemble initial quaternion through gtsam constructor ::quaternion(w,x,y,z);
Rot3 prior_rotation = Rot3::Quaternion(initial_state(6), initial_state(3),
@ -94,29 +91,27 @@ int main(int argc, char* argv[])
initial_values.insert(B(correction_count), prior_imu_bias);
// Assemble prior noise model and add it the graph.
noiseModel::Diagonal::shared_ptr pose_noise_model = noiseModel::Diagonal::Sigmas((Vector(6) << 0.01, 0.01, 0.01, 0.5, 0.5, 0.5).finished()); // m, m, m, deg, deg, deg
noiseModel::Diagonal::shared_ptr velocity_noise_model = noiseModel::Diagonal::Sigmas((Vector(3) << 0.1, 0.1, 0.1).finished()); // m/s
noiseModel::Diagonal::shared_ptr bias_noise_model = noiseModel::Diagonal::Sigmas((Vector(6) << 0.001, 0.001, 0.001, 0.001, 0.001, 0.001).finished());
noiseModel::Diagonal::shared_ptr pose_noise_model = noiseModel::Diagonal::Sigmas((Vector(6) << 0.01, 0.01, 0.01, 0.5, 0.5, 0.5).finished()); // rad,rad,rad,m, m, m
noiseModel::Diagonal::shared_ptr velocity_noise_model = noiseModel::Isotropic::Sigma(3,0.1); // m/s
noiseModel::Diagonal::shared_ptr bias_noise_model = noiseModel::Isotropic::Sigma(6,1e-3);
// Add all prior factors (pose, velocity, bias) to the graph.
NonlinearFactorGraph *graph = new NonlinearFactorGraph();
graph->add(PriorFactor<Pose3>(X(correction_count), prior_pose, pose_noise_model));
graph->add(PriorFactor<Vector3>(V(correction_count), prior_velocity,
velocity_noise_model));
graph->add(PriorFactor<imuBias::ConstantBias>(B(correction_count), prior_imu_bias,
bias_noise_model));
graph->add(PriorFactor<Vector3>(V(correction_count), prior_velocity,velocity_noise_model));
graph->add(PriorFactor<imuBias::ConstantBias>(B(correction_count), prior_imu_bias,bias_noise_model));
// We use the sensor specs to build the noise model for the IMU factor.
double accel_noise_sigma = 0.0003924;
double gyro_noise_sigma = 0.000205689024915;
double accel_bias_rw_sigma = 0.004905;
double gyro_bias_rw_sigma = 0.000001454441043;
Matrix3d measured_acc_cov = Matrix3d::Identity(3,3) * std::pow(accel_noise_sigma,2);
Matrix3d measured_omega_cov = Matrix3d::Identity(3,3) * std::pow(gyro_noise_sigma,2);
Matrix3d integration_error_cov = Matrix3d::Identity(3,3)*100000; // ?
Matrix3d bias_acc_cov = Matrix3d::Identity(3,3) * std::pow(accel_bias_rw_sigma,2);
Matrix3d bias_omega_cov = Matrix3d::Identity(3,3) * std::pow(gyro_bias_rw_sigma,2);
Eigen::Matrix<double,6,6> bias_acc_omega_int = MatrixXd::Identity(6,6)*0.001; // ?
Matrix3d measured_acc_cov = Matrix3d::Identity(3,3) * pow(accel_noise_sigma,2);
Matrix3d measured_omega_cov = Matrix3d::Identity(3,3) * pow(gyro_noise_sigma,2);
Matrix3d integration_error_cov = Matrix3d::Identity(3,3)*1e4; // error committed in integrating position from velocities
Matrix3d bias_acc_cov = Matrix3d::Identity(3,3) * pow(accel_bias_rw_sigma,2);
Matrix3d bias_omega_cov = Matrix3d::Identity(3,3) * pow(gyro_bias_rw_sigma,2);
Eigen::Matrix<double,6,6> bias_acc_omega_int = MatrixXd::Identity(6,6)*1e-3; // error in the bias used for preintegration
//#ifdef USE_COMBINED
boost::shared_ptr<PreintegratedCombinedMeasurements::Params> p = PreintegratedCombinedMeasurements::Params::MakeSharedD(0.0);
@ -154,29 +149,28 @@ int main(int argc, char* argv[])
// Parse out first value
getline(file, value, ',');
int type = std::atoi(value.c_str());
int type = atoi(value.c_str());
if (type == 0) { // IMU measurement
Eigen::Matrix<double,6,1> imu = Eigen::Matrix<double,6,1>::Zero();
for (int i=0; i<5; ++i) {
getline(file, value, ',');
imu(i) = std::atof(value.c_str());
imu(i) = atof(value.c_str());
}
getline(file, value, '\n');
imu(5) = std::atof(value.c_str());
imu(5) = atof(value.c_str());
// Adding the IMU preintegration.
imu_preintegrated_->integrateMeasurement(imu.head<3>(), imu.tail<3>(), dt);
prop_state = imu_preintegrated_->predict(prev_state, prev_bias);
} else if (type == 1) { // GPS measurement
Eigen::Matrix<double,7,1> gps = Eigen::Matrix<double,7,1>::Zero();
for (int i=0; i<6; ++i) {
getline(file, value, ',');
gps(i) = std::atof(value.c_str());
gps(i) = atof(value.c_str());
}
getline(file, value, '\n');
gps(6) = std::atof(value.c_str());
gps(6) = atof(value.c_str());
correction_count++;
@ -202,8 +196,7 @@ int main(int argc, char* argv[])
#endif
noiseModel::Diagonal::shared_ptr correction_noise = noiseModel::Diagonal::Variances((Vector(3) << 1, 1, 1).finished());
noiseModel::Diagonal::shared_ptr correction_noise = noiseModel::Isotropic::Sigma(3,1.0);
GPSFactor gps_factor(X(correction_count),
Point3(gps(0), // N,
gps(1), // E,
@ -212,12 +205,15 @@ int main(int argc, char* argv[])
graph->add(gps_factor);
// Now optimize and compare results.
prop_state = imu_preintegrated_->predict(prev_state, prev_bias);
initial_values.insert(X(correction_count), prop_state.pose());
initial_values.insert(V(correction_count), prop_state.v());
initial_values.insert(B(correction_count), prev_bias);
LevenbergMarquardtOptimizer optimizer(*graph, initial_values);
Values result = optimizer.optimize();
cout << "Residual error (before opt): " << graph->error(initial_values) << " ";
cout << "Residual error (after opt): " << graph->error(result) << " ";
// Overwrite the beginning of the preintegration for the next step.
prev_state = NavState(result.at<Pose3>(X(correction_count)),
@ -229,26 +225,24 @@ int main(int argc, char* argv[])
//prev_bias.print();
// Print out the position and orientation error for comparison.
Vector3d gtsam_pose = prev_state.pose().translation().vector();
Vector3d gtsam_position = prev_state.pose().translation().vector();
Vector3d position_error = gtsam_position - gps.head<3>();
pose_error_sum += position_error.norm();
Quaterniond gtsam_quat = prev_state.pose().rotation().toQuaternion();
Quaterniond gps_quat(gps(6), gps(3), gps(4), gps(5));
Vector3d position_error = gtsam_pose - gps.head<3>();
Quaterniond quat_error = gtsam_quat * gps_quat.inverse();
quat_error.normalize();
Vector3d euler_angle_error(quat_error.x()*2,
quat_error.y()*2,
quat_error.z()*2);
pose_error_sum += position_error.norm();
orientation_error_sum += euler_angle_error.norm();
std::cout << pose_error_sum << "\t " << orientation_error_sum << "\n";
//std::cout << "For correction " << correction_count-1 << ", pose error is:\n" << position_error << "\n(in meters, NED), and quaternion error is:\n" << euler_angle_error*(180/M_PI) << "\n(in degrees)\n\n";
// display statistics
cout << "Position error:" << pose_error_sum << "\t " << "Angular error:" << orientation_error_sum << "\n";
fprintf(fp_out, "%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f\n",
output_time, gtsam_pose(0), gtsam_pose(1), gtsam_pose(2),
output_time, gtsam_position(0), gtsam_position(1), gtsam_position(2),
gtsam_quat.x(), gtsam_quat.y(), gtsam_quat.z(), gtsam_quat.w(),
gps(0), gps(1), gps(2),
gps_quat.x(), gps_quat.y(), gps_quat.z(), gps_quat.w());
@ -256,7 +250,7 @@ int main(int argc, char* argv[])
output_time += 1.0;
} else {
std::cerr << "ERROR parsing file\n";
cerr << "ERROR parsing file\n";
return 1;
}
@ -264,6 +258,6 @@ int main(int argc, char* argv[])
fclose(fp_out);
std::cout << "Complete, results written to " << output_filename << "\n\n";;
cout << "Complete, results written to " << output_filename << "\n\n";;
return 0;
}