fixed test on real data (gt)
parent
24157ca124
commit
46c6d41cd6
|
@ -9,13 +9,13 @@ clear all
|
|||
close all
|
||||
|
||||
%% Configuration
|
||||
useRealData = 0; % controls whether or not to use the Real data (is available) as the ground truth traj
|
||||
includeIMUFactors = 1; % if true, IMU type 1 Factors will be generated for the random trajectory
|
||||
useRealData = 1; % controls whether or not to use the Real data (is available) as the ground truth traj
|
||||
includeIMUFactors = 0; % if true, IMU type 1 Factors will be generated for the random trajectory
|
||||
% includeCameraFactors = 0; % not implemented yet
|
||||
trajectoryLength = 2; % length of the ground truth trajectory
|
||||
trajectoryLength = 210; % length of the ground truth trajectory
|
||||
|
||||
%% Imu metadata
|
||||
epsBias = 1e-20;
|
||||
epsBias = 1e-7;
|
||||
zeroBias = imuBias.ConstantBias(zeros(3,1), zeros(3,1));
|
||||
IMU_metadata.AccelerometerSigma = 1e-5;
|
||||
IMU_metadata.GyroscopeSigma = 1e-7;
|
||||
|
@ -28,7 +28,7 @@ noiseBias = noiseModel.Isotropic.Sigma(6, epsBias);
|
|||
|
||||
%% Between metadata
|
||||
if useRealData == 1
|
||||
sigma_ang = 1e-4; sigma_cart = 40;
|
||||
sigma_ang = 1e-4; sigma_cart = 0.01;
|
||||
else
|
||||
sigma_ang = 1e-2; sigma_cart = 0.1;
|
||||
end
|
||||
|
@ -40,55 +40,58 @@ gtValues = Values;
|
|||
gtGraph = NonlinearFactorGraph;
|
||||
|
||||
if useRealData == 1
|
||||
% % % %% Create a ground truth trajectory from Real data (if available)
|
||||
% % % fprintf('\nUsing real data as ground truth\n');
|
||||
% % % gtScenario2 = load('truth_scen2.mat', 'Lat', 'Lon', 'Alt', 'Roll', 'Pitch', 'Heading');
|
||||
% Time: [4201x1 double]
|
||||
% Lat: [4201x1 double]
|
||||
% Lon: [4201x1 double]
|
||||
% Alt: [4201x1 double]
|
||||
% VEast: [4201x1 double]
|
||||
% VNorth: [4201x1 double]
|
||||
% VUp: [4201x1 double]
|
||||
% Roll: [4201x1 double]
|
||||
% Pitch: [4201x1 double]
|
||||
% Heading
|
||||
% % %
|
||||
% % % % Add first pose
|
||||
% % % currentPoseKey = symbol('x', 0);
|
||||
% % % initialPosition = imuSimulator.LatLonHRad_to_ECEF([gtScenario2.Lat(1); gtScenario2.Lon(1); gtScenario2.Alt(1)]);
|
||||
% % % initialRotation = [gtScenario2.Roll(1); gtScenario2.Pitch(1); gtScenario2.Heading(1)];
|
||||
% % % currentPose = Pose3.Expmap([initialRotation; initialPosition]); % initial pose
|
||||
% % % gtValues.insert(currentPoseKey, currentPose);
|
||||
% % % gtGraph.add(PriorFactorPose3(currentPoseKey, currentPose, noisePose));
|
||||
% % % prevPose = currentPose;
|
||||
% % %
|
||||
% % % % Limit the trajectory length
|
||||
% % % trajectoryLength = min([length(gtScenario2.Lat) trajectoryLength]);
|
||||
% % %
|
||||
% % % for i=2:trajectoryLength
|
||||
% % % currentPoseKey = symbol('x', i-1);
|
||||
% % % gtECEF = imuSimulator.LatLonHRad_to_ECEF([gtScenario2.Lat(i); gtScenario2.Lon(i); gtScenario2.Alt(i)]);
|
||||
% % % gtRotation = [gtScenario2.Roll(i); gtScenario2.Pitch(i); gtScenario2.Heading(i)];
|
||||
% % % currentPose = Pose3.Expmap([gtRotation; gtECEF]);
|
||||
% % %
|
||||
% % % % Generate measurements as the current pose measured in the frame of
|
||||
% % % % the previous pose
|
||||
% % % deltaPose = prevPose.between(currentPose);
|
||||
% % % gtDeltaMatrix(i-1,:) = Pose3.Logmap(deltaPose);
|
||||
% % % prevPose = currentPose;
|
||||
% % %
|
||||
% % % % Add values
|
||||
% % % gtValues.insert(currentPoseKey, currentPose);
|
||||
% % %
|
||||
% % % % Add the factor to the factor graph
|
||||
% % % gtGraph.add(BetweenFactorPose3(currentPoseKey-1, currentPoseKey, deltaPose, noisePose));
|
||||
% % % end
|
||||
subsampleStep = 20;
|
||||
|
||||
%% Create a ground truth trajectory from Real data (if available)
|
||||
fprintf('\nUsing real data as ground truth\n');
|
||||
gtScenario = load('truth_scen2.mat', 'Time', 'Lat', 'Lon', 'Alt', 'Roll', 'Pitch', 'Heading',...
|
||||
'VEast', 'VNorth', 'VUp');
|
||||
|
||||
Org_lat = gtScenario.Lat(1);
|
||||
Org_lon = gtScenario.Lon(1);
|
||||
initialPositionECEF = imuSimulator.LatLonHRad_to_ECEF([gtScenario.Lat(1); gtScenario.Lon(1); gtScenario.Alt(1)]);
|
||||
|
||||
% Limit the trajectory length
|
||||
trajectoryLength = min([length(gtScenario.Lat) trajectoryLength]);
|
||||
|
||||
for i=1:trajectoryLength
|
||||
currentPoseKey = symbol('x', i-1);
|
||||
scenarioInd = subsampleStep * (i-1) + 1
|
||||
gtECEF = imuSimulator.LatLonHRad_to_ECEF([gtScenario.Lat(scenarioInd); gtScenario.Lon(scenarioInd); gtScenario.Alt(scenarioInd)]);
|
||||
% truth in ENU
|
||||
dX = gtECEF(1) - initialPositionECEF(1);
|
||||
dY = gtECEF(2) - initialPositionECEF(2);
|
||||
dZ = gtECEF(3) - initialPositionECEF(3);
|
||||
[xlt, ylt, zlt] = imuSimulator.ct2ENU(dX, dY, dZ,Org_lat, Org_lon);
|
||||
|
||||
gtPosition = [xlt, ylt, zlt]';
|
||||
gtRotation = Rot3; % Rot3.ypr(gtScenario.Heading(scenarioInd), gtScenario.Pitch(scenarioInd), gtScenario.Roll(scenarioInd));
|
||||
currentPose = Pose3(gtRotation, Point3(gtPosition));
|
||||
|
||||
% Add values
|
||||
gtValues.insert(currentPoseKey, currentPose);
|
||||
|
||||
if i==1 % first time step, add priors
|
||||
warning('roll-pitch-yaw is different from Rodriguez')
|
||||
warning('using identity rotation')
|
||||
gtGraph.add(PriorFactorPose3(currentPoseKey, currentPose, noisePose));
|
||||
measurements.posePrior = currentPose;
|
||||
else
|
||||
% Generate measurements as the current pose measured in the frame of
|
||||
% the previous pose
|
||||
deltaPose = prevPose.between(currentPose);
|
||||
measurements.gtDeltaMatrix(i-1,:) = Pose3.Logmap(deltaPose);
|
||||
|
||||
% Add the factor to the factor graph
|
||||
gtGraph.add(BetweenFactorPose3(currentPoseKey-1, currentPoseKey, deltaPose, noisePose));
|
||||
end
|
||||
prevPose = currentPose;
|
||||
end
|
||||
else
|
||||
%% Create a random trajectory as ground truth
|
||||
currentVel = [0 0 0]; % initial velocity (used to generate IMU measurements)
|
||||
currentVel = [0; 0; 0]; % initial velocity (used to generate IMU measurements)
|
||||
currentPose = Pose3; % initial pose % initial pose
|
||||
deltaT = 1.0; % amount of time between IMU measurements
|
||||
deltaT = 0.1; % amount of time between IMU measurements
|
||||
g = [0; 0; 0]; % gravity
|
||||
omegaCoriolis = [0; 0; 0]; % Coriolis
|
||||
|
||||
|
@ -104,9 +107,9 @@ else
|
|||
if includeIMUFactors == 1
|
||||
currentVelKey = symbol('v', 0);
|
||||
currentBiasKey = symbol('b', 0);
|
||||
gtValues.insert(currentVelKey, LieVector(vel'));
|
||||
gtValues.insert(currentVelKey, LieVector(currentVel));
|
||||
gtValues.insert(currentBiasKey, zeroBias);
|
||||
gtGraph.add(PriorFactorLieVector(currentVelKey, LieVector(vel'), noiseVel));
|
||||
gtGraph.add(PriorFactorLieVector(currentVelKey, LieVector(currentVel), noiseVel));
|
||||
gtGraph.add(PriorFactorConstantBias(currentBiasKey, zeroBias, noiseBias));
|
||||
end
|
||||
|
||||
|
@ -116,60 +119,71 @@ else
|
|||
gtDeltaPosition = unsmooth_DP*randn(3,1) + [20;0;0]; % create random vector with mean = [1 0 0] and sigma = 0.5
|
||||
gtDeltaRotation = unsmooth_DR*randn(3,1) + [0;0;0]; % create random rotation with mean [0 0 0] and sigma = 0.1 (rad)
|
||||
gtDeltaMatrix(i,:) = [gtDeltaRotation; gtDeltaPosition];
|
||||
measurements.deltaPose = Pose3.Expmap(gtDeltaMatrix(i,:)');
|
||||
gtMeasurements.deltaPose = Pose3.Expmap(gtDeltaMatrix(i,:)');
|
||||
|
||||
% "Deduce" ground truth measurements
|
||||
% deltaPose are the gt measurements - save them in some structure
|
||||
currentPose = currentPose.compose(deltaPose);
|
||||
currentPose = currentPose.compose(gtMeasurements.deltaPose);
|
||||
gtValues.insert(currentPoseKey, currentPose);
|
||||
|
||||
% Add the factors to the factor graph
|
||||
gtGraph.add(BetweenFactorPose3(currentPoseKey-1, currentPoseKey, deltaPose, noisePose));
|
||||
gtGraph.add(BetweenFactorPose3(currentPoseKey-1, currentPoseKey, gtMeasurements.deltaPose, noisePose));
|
||||
|
||||
% Add IMU factors
|
||||
if includeIMUFactors == 1
|
||||
currentVelKey = symbol('v', i); % not used if includeIMUFactors is false
|
||||
currentBiasKey = symbol('b', i); % not used if includeIMUFactors is false
|
||||
|
||||
|
||||
% create accel and gyro measurements based on
|
||||
measurements.imu.gyro = gtDeltaMatrix(i, 1:3)./deltaT;
|
||||
gtMeasurements.imu.gyro = gtDeltaMatrix(i, 1:3)'./deltaT;
|
||||
% acc = (deltaPosition - initialVel * dT) * (2/dt^2)
|
||||
measurements.imu.accel = (gtDeltaMatrix(i, 4:6) - currentVel.*deltaT).*(2/(deltaT*deltaT));
|
||||
% update current velocity
|
||||
currentVel = gtDeltaMatrix(i,4:6)./deltaT;
|
||||
imuMeasurement = gtsam.ImuFactorPreintegratedMeasurements( ...
|
||||
zeroBias, ...
|
||||
gtMeasurements.imu.accel = (gtDeltaMatrix(i, 4:6)' - currentVel.*deltaT).*(2/(deltaT*deltaT));
|
||||
% Initialize preintegration
|
||||
imuMeasurement = gtsam.ImuFactorPreintegratedMeasurements(zeroBias, ...
|
||||
IMU_metadata.AccelerometerSigma.^2 * eye(3), ...
|
||||
IMU_metadata.GyroscopeSigma.^2 * eye(3), ...
|
||||
IMU_metadata.IntegrationSigma.^2 * eye(3));
|
||||
imuMeasurement.integrateMeasurement(accel', gyro', deltaT);
|
||||
gtGraph.add(ImuFactor( ...
|
||||
currentPoseKey-1, currentVelKey-1, ...
|
||||
currentPoseKey, currentVelKey, ...
|
||||
% Preintegrate
|
||||
imuMeasurement.integrateMeasurement(gtMeasurements.imu.accel, gtMeasurements.imu.gyro, deltaT);
|
||||
% Add Imu factor
|
||||
gtGraph.add(ImuFactor(currentPoseKey-1, currentVelKey-1, currentPoseKey, currentVelKey, ...
|
||||
currentBiasKey-1, imuMeasurement, g, omegaCoriolis));
|
||||
% Add between on biases
|
||||
gtGraph.add(BetweenFactorConstantBias(currentBiasKey-1, currentBiasKey, zeroBias, ...
|
||||
noiseModel.Isotropic.Sigma(6, epsBias)));
|
||||
% Additional prior on zerobias
|
||||
gtGraph.add(PriorFactorConstantBias(currentBiasKey, zeroBias, ...
|
||||
noiseModel.Isotropic.Sigma(6, epsBias)));
|
||||
gtValues.insert(currentVelKey, LieVector(vel'));
|
||||
|
||||
% update current velocity
|
||||
currentVel = gtDeltaMatrix(i,4:6)'./deltaT;
|
||||
gtValues.insert(currentVelKey, LieVector(currentVel));
|
||||
|
||||
gtGraph.add(PriorFactorLieVector(currentVelKey, LieVector(currentVel), noiseVel));
|
||||
|
||||
gtValues.insert(currentBiasKey, zeroBias);
|
||||
end
|
||||
end
|
||||
end % end of trajectory length
|
||||
|
||||
end
|
||||
end % end of ground truth creation
|
||||
|
||||
gtPoses = Values;
|
||||
for i=0:trajectoryLength
|
||||
currentPoseKey = symbol('x', i);
|
||||
currentPose = gtValues.at(currentPoseKey);
|
||||
gtPoses.insert(currentPoseKey, currentPose);
|
||||
end
|
||||
warning('Additional prior on zerobias')
|
||||
warning('Additional PriorFactorLieVector on velocities')
|
||||
|
||||
% gtPoses = Values;
|
||||
% for i=0:trajectoryLength
|
||||
% currentPoseKey = symbol('x', i);
|
||||
% currentPose = gtValues.at(currentPoseKey);
|
||||
% gtPoses.insert(currentPoseKey, currentPose);
|
||||
% end
|
||||
|
||||
figure(1)
|
||||
hold on;
|
||||
plot3DTrajectory(gtPoses, '-r', [], 1, Marginals(gtGraph, gtPoses));
|
||||
plot3DTrajectory(gtValues, '-r', [], 1, Marginals(gtGraph, gtValues));
|
||||
axis equal
|
||||
|
||||
dis('Plotted ground truth')
|
||||
|
||||
numMonteCarloRuns = 100;
|
||||
for k=1:numMonteCarloRuns
|
||||
fprintf('Monte Carlo Run %d.\n', k');
|
||||
|
@ -179,8 +193,8 @@ for k=1:numMonteCarloRuns
|
|||
% noisy prior
|
||||
if useRealData == 1
|
||||
currentPoseKey = symbol('x', 0);
|
||||
initialPosition = imuSimulator.LatLonHRad_to_ECEF([gtScenario2.Lat(1); gtScenario2.Lon(1); gtScenario2.Alt(1)]);
|
||||
initialRotation = [gtScenario2.Roll(1); gtScenario2.Pitch(1); gtScenario2.Heading(1)];
|
||||
initialPosition = imuSimulator.LatLonHRad_to_ECEF([gtScenario.Lat(1); gtScenario.Lon(1); gtScenario.Alt(1)]);
|
||||
initialRotation = [gtScenario.Roll(1); gtScenario.Pitch(1); gtScenario.Heading(1)];
|
||||
initialPose = Pose3.Expmap([initialRotation; initialPosition] + (noiseVector .* randn(6,1))); % initial noisy pose
|
||||
graph.add(PriorFactorPose3(currentPoseKey, initialPose, noisePose));
|
||||
else
|
||||
|
|
|
@ -0,0 +1,55 @@
|
|||
function [dx,dy,dz]=ct2ENU(dX,dY,dZ,lat,lon)
|
||||
% CT2LG Converts CT coordinate differences to local geodetic.
|
||||
% Local origin at lat,lon,h. If lat,lon are vectors, dx,dy,dz
|
||||
% are referenced to orgin at lat,lon of same index. If
|
||||
% astronomic lat,lon input, output is in local astronomic
|
||||
% system. Vectorized in both dx,dy,dz and lat,lon. See also
|
||||
% LG2CT.
|
||||
% Version: 2011-02-19
|
||||
% Useage: [dx,dy,dz]=ct2lg(dX,dY,dZ,lat,lon)
|
||||
% Input: dX - vector of X coordinate differences in CT
|
||||
% dY - vector of Y coordinate differences in CT
|
||||
% dZ - vector of Z coordinate differences in CT
|
||||
% lat - lat(s) of local system origin (rad); may be vector
|
||||
% lon - lon(s) of local system origin (rad); may be vector
|
||||
% Output: dx - vector of x coordinates in local system (east)
|
||||
% dy - vector of y coordinates in local system (north)
|
||||
% dz - vector of z coordinates in local system (up)
|
||||
|
||||
% Copyright (c) 2011, Michael R. Craymer
|
||||
% All rights reserved.
|
||||
% Email: mike@craymer.com
|
||||
|
||||
if nargin ~= 5
|
||||
warning('Incorrect number of input arguements');
|
||||
return
|
||||
end
|
||||
|
||||
n=length(dX);
|
||||
if length(lat)==1
|
||||
lat=ones(n,1)*lat;
|
||||
lon=ones(n,1)*lon;
|
||||
end
|
||||
R=zeros(3,3,n);
|
||||
|
||||
R(1,1,:)=-sin(lat').*cos(lon');
|
||||
R(1,2,:)=-sin(lat').*sin(lon');
|
||||
R(1,3,:)=cos(lat');
|
||||
R(2,1,:)=sin(lon');
|
||||
R(2,2,:)=-cos(lon');
|
||||
R(2,3,:)=zeros(1,n);
|
||||
R(3,1,:)=cos(lat').*cos(lon');
|
||||
R(3,2,:)=cos(lat').*sin(lon');
|
||||
R(3,3,:)=sin(lat');
|
||||
|
||||
RR=reshape(R(1,:,:),3,n);
|
||||
dx_temp=sum(RR'.*[dX dY dZ],2);
|
||||
RR=reshape(R(2,:,:),3,n);
|
||||
dy_temp=sum(RR'.*[dX dY dZ],2);
|
||||
RR=reshape(R(3,:,:),3,n);
|
||||
dz=sum(RR'.*[dX dY dZ],2);
|
||||
|
||||
dx = -dy_temp;
|
||||
dy = dx_temp;
|
||||
|
||||
|
Loading…
Reference in New Issue