Merge remote-tracking branch 'origin/develop' into feature/LPSolver
commit
45d3b99b26
|
@ -9,3 +9,11 @@
|
|||
*.txt.user.6d59f0c
|
||||
/python-build/
|
||||
*.pydevproject
|
||||
cython/venv
|
||||
cython/gtsam.cpp
|
||||
cython/gtsam.cpython-35m-darwin.so
|
||||
cython/gtsam.pyx
|
||||
cython/gtsam.so
|
||||
cython/gtsam_wrapper.pxd
|
||||
.vscode
|
||||
.env
|
||||
|
|
|
@ -73,11 +73,12 @@ option(GTSAM_TANGENT_PREINTEGRATION "Use new ImuFactor with integration on
|
|||
# Options relating to MATLAB wrapper
|
||||
# TODO: Check for matlab mex binary before handling building of binaries
|
||||
option(GTSAM_INSTALL_MATLAB_TOOLBOX "Enable/Disable installation of matlab toolbox" OFF)
|
||||
option(GTSAM_BUILD_WRAP "Enable/Disable building of matlab wrap utility (necessary for matlab interface)" ON)
|
||||
option(GTSAM_INSTALL_CYTHON_TOOLBOX "Enable/Disable installation of Cython toolbox" OFF)
|
||||
option(GTSAM_BUILD_WRAP "Enable/Disable building of matlab/cython wrap utility (necessary for matlab/cython interface)" ON)
|
||||
|
||||
# Check / set dependent variables for MATLAB wrapper
|
||||
if(GTSAM_INSTALL_MATLAB_TOOLBOX AND NOT GTSAM_BUILD_WRAP)
|
||||
message(FATAL_ERROR "GTSAM_INSTALL_MATLAB_TOOLBOX is enabled, please also enable GTSAM_BUILD_WRAP")
|
||||
if((GTSAM_INSTALL_MATLAB_TOOLBOX OR GTSAM_INSTALL_CYTHON_TOOLBOX) AND NOT GTSAM_BUILD_WRAP)
|
||||
message(FATAL_ERROR "GTSAM_INSTALL_MATLAB_TOOLBOX or GTSAM_INSTALL_CYTHON_TOOLBOX is enabled, please also enable GTSAM_BUILD_WRAP")
|
||||
endif()
|
||||
if(GTSAM_INSTALL_WRAP AND NOT GTSAM_BUILD_WRAP)
|
||||
message(FATAL_ERROR "GTSAM_INSTALL_WRAP is enabled, please also enable GTSAM_BUILD_WRAP")
|
||||
|
@ -95,6 +96,10 @@ if(GTSAM_INSTALL_MATLAB_TOOLBOX AND GTSAM_TYPEDEF_POINTS_TO_VECTORS)
|
|||
message(FATAL_ERROR "GTSAM_INSTALL_MATLAB_TOOLBOX and GTSAM_TYPEDEF_POINTS_TO_VECTORS are both enabled. For now, the MATLAB toolbox cannot deal with this yet. Please turn one of the two options off.")
|
||||
endif()
|
||||
|
||||
if(GTSAM_INSTALL_CYTHON_TOOLBOX AND GTSAM_TYPEDEF_POINTS_TO_VECTORS)
|
||||
message(FATAL_ERROR "GTSAM_INSTALL_CYTHON_TOOLBOX and GTSAM_TYPEDEF_POINTS_TO_VECTORS are both enabled. For now, the CYTHON toolbox cannot deal with this yet. Please turn one of the two options off.")
|
||||
endif()
|
||||
|
||||
# Flags for choosing default packaging tools
|
||||
set(CPACK_SOURCE_GENERATOR "TGZ" CACHE STRING "CPack Default Source Generator")
|
||||
set(CPACK_GENERATOR "TGZ" CACHE STRING "CPack Default Binary Generator")
|
||||
|
@ -359,6 +364,11 @@ add_subdirectory(examples)
|
|||
# Build timing
|
||||
add_subdirectory(timing)
|
||||
|
||||
# Build gtsam_unstable
|
||||
if (GTSAM_BUILD_UNSTABLE)
|
||||
add_subdirectory(gtsam_unstable)
|
||||
endif(GTSAM_BUILD_UNSTABLE)
|
||||
|
||||
# Matlab toolbox
|
||||
if (GTSAM_INSTALL_MATLAB_TOOLBOX)
|
||||
add_subdirectory(matlab)
|
||||
|
@ -378,10 +388,20 @@ if (GTSAM_BUILD_PYTHON)
|
|||
|
||||
endif()
|
||||
|
||||
# Build gtsam_unstable
|
||||
if (GTSAM_BUILD_UNSTABLE)
|
||||
add_subdirectory(gtsam_unstable)
|
||||
endif(GTSAM_BUILD_UNSTABLE)
|
||||
# Cython wrap
|
||||
if (GTSAM_INSTALL_CYTHON_TOOLBOX)
|
||||
set(GTSAM_INSTALL_CYTHON_TOOLBOX 1)
|
||||
# Set up cache options
|
||||
set(GTSAM_CYTHON_INSTALL_PATH "" CACHE PATH "Cython toolbox destination, blank defaults to CMAKE_INSTALL_PREFIX/cython")
|
||||
if(NOT GTSAM_CYTHON_INSTALL_PATH)
|
||||
set(GTSAM_CYTHON_INSTALL_PATH "${CMAKE_INSTALL_PREFIX}/cython")
|
||||
endif()
|
||||
set(GTSAM_EIGENCY_INSTALL_PATH ${GTSAM_CYTHON_INSTALL_PATH}/gtsam_eigency)
|
||||
add_subdirectory(cython)
|
||||
else()
|
||||
set(GTSAM_INSTALL_CYTHON_TOOLBOX 0) # This will go into config.h
|
||||
endif()
|
||||
|
||||
|
||||
# Install config and export files
|
||||
GtsamMakeConfigFile(GTSAM "${CMAKE_CURRENT_SOURCE_DIR}/gtsam_extra.cmake.in")
|
||||
|
@ -509,6 +529,10 @@ endif()
|
|||
if(GTSAM_BUILD_PYTHON)
|
||||
message(STATUS " Python version : ${GTSAM_PYTHON_VERSION}")
|
||||
endif()
|
||||
|
||||
message(STATUS "Cython toolbox flags ")
|
||||
print_config_flag(${GTSAM_INSTALL_CYTHON_TOOLBOX} "Install Cython toolbox ")
|
||||
print_config_flag(${GTSAM_BUILD_WRAP} "Build Wrap ")
|
||||
message(STATUS "===============================================================")
|
||||
|
||||
# Print warnings at the end
|
||||
|
|
6
LICENSE
6
LICENSE
|
@ -4,11 +4,11 @@ LICENSE.BSD in this directory.
|
|||
GTSAM contains two third party libraries, with documentation of licensing and
|
||||
modifications as follows:
|
||||
|
||||
- CCOLAMD 2.73: Tim Davis' constrained column approximate minimum degree
|
||||
- CCOLAMD 2.9.3: Tim Davis' constrained column approximate minimum degree
|
||||
ordering library
|
||||
- Included unmodified in gtsam/3rdparty/CCOLAMD and gtsam/3rdparty/UFconfig
|
||||
- http://www.cise.ufl.edu/research/sparse
|
||||
- Licenced under LGPL v2.1, provided in gtsam/3rdparty/CCOLAMD/Doc/lesser.txt
|
||||
- http://faculty.cse.tamu.edu/davis/suitesparse.html
|
||||
- Licenced under BSD-3, provided in gtsam/3rdparty/CCOLAMD/Doc/License.txt
|
||||
- Eigen 3.2: General C++ matrix and linear algebra library
|
||||
- Modified with 3 patches that have been contributed back to the Eigen team:
|
||||
- http://eigen.tuxfamily.org/bz/show_bug.cgi?id=704 (Householder QR MKL selection)
|
||||
|
|
|
@ -62,11 +62,14 @@ If you are using the factor in academic work, please cite the publications above
|
|||
In GTSAM 4 a new and more efficient implementation, based on integrating on the NavState tangent space and detailed in docs/ImuFactor.pdf, is enabled by default. To switch to the RSS 2015 version, set the flag **GTSAM_TANGENT_PREINTEGRATION** to OFF.
|
||||
|
||||
|
||||
|
||||
Additional Information
|
||||
----------------------
|
||||
|
||||
Read about important [`GTSAM-Concepts`](GTSAM-Concepts.md) here.
|
||||
There is a [`GTSAM users Google group`](https://groups.google.com/forum/#!forum/gtsam-users) for general discussion.
|
||||
|
||||
Read about important [`GTSAM-Concepts`](GTSAM-Concepts.md) here. A primer on GTSAM Expressions,
|
||||
which support (superfast) automatic differentiation,
|
||||
can be found on the [GTSAM wiki on BitBucket](https://bitbucket.org/gtborg/gtsam/wiki/Home).
|
||||
|
||||
See the [`INSTALL`](INSTALL) file for more detailed installation instructions.
|
||||
|
||||
|
|
|
@ -0,0 +1,15 @@
|
|||
# Built from sample configuration for C++ – Make.
|
||||
# Check https://confluence.atlassian.com/x/5Q4SMw for more examples.
|
||||
# -----
|
||||
# Our custom docker image from Docker Hub as the build environment.
|
||||
image: dellaert/ubuntu-boost-tbb-eigen3:bionic
|
||||
|
||||
pipelines:
|
||||
default:
|
||||
- step:
|
||||
script: # Modify the commands below to build your repository.
|
||||
- mkdir build
|
||||
- cd build
|
||||
- cmake -DGTSAM_USE_SYSTEM_EIGEN=ON -DGTSAM_USE_EIGEN_MKL=OFF ..
|
||||
- make -j2
|
||||
- make -j2 check
|
|
@ -18,7 +18,10 @@ install(FILES
|
|||
GtsamMakeConfigFile.cmake
|
||||
GtsamMatlabWrap.cmake
|
||||
GtsamPythonWrap.cmake
|
||||
GtsamCythonWrap.cmake
|
||||
GtsamTesting.cmake
|
||||
FindCython.cmake
|
||||
FindNumPy.cmake
|
||||
README.html
|
||||
DESTINATION "${SCRIPT_INSTALL_DIR}/GTSAMCMakeTools")
|
||||
|
||||
|
|
|
@ -0,0 +1,76 @@
|
|||
# Modifed from: https://github.com/nest/nest-simulator/blob/master/cmake/FindCython.cmake
|
||||
#
|
||||
# Find the Cython compiler.
|
||||
#
|
||||
# This code sets the following variables:
|
||||
#
|
||||
# CYTHON_FOUND
|
||||
# CYTHON_PATH
|
||||
# CYTHON_EXECUTABLE
|
||||
# CYTHON_VERSION
|
||||
#
|
||||
# See also UseCython.cmake
|
||||
|
||||
#=============================================================================
|
||||
# Copyright 2011 Kitware, Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#=============================================================================
|
||||
|
||||
# Use the Cython executable that lives next to the Python executable
|
||||
# if it is a local installation.
|
||||
find_package( PythonInterp )
|
||||
if ( PYTHONINTERP_FOUND )
|
||||
execute_process( COMMAND "${PYTHON_EXECUTABLE}" "-c"
|
||||
"import Cython; print Cython.__path__"
|
||||
RESULT_VARIABLE RESULT
|
||||
OUTPUT_VARIABLE CYTHON_PATH
|
||||
OUTPUT_STRIP_TRAILING_WHITESPACE
|
||||
)
|
||||
endif ()
|
||||
|
||||
# RESULT=0 means ok
|
||||
if ( NOT RESULT )
|
||||
get_filename_component( _python_path ${PYTHON_EXECUTABLE} PATH )
|
||||
find_program( CYTHON_EXECUTABLE
|
||||
NAMES cython cython.bat cython3
|
||||
HINTS ${_python_path}
|
||||
)
|
||||
endif ()
|
||||
|
||||
# RESULT=0 means ok
|
||||
if ( NOT RESULT )
|
||||
execute_process( COMMAND "${PYTHON_EXECUTABLE}" "-c"
|
||||
"import Cython; print Cython.__version__"
|
||||
RESULT_VARIABLE RESULT
|
||||
OUTPUT_VARIABLE CYTHON_VAR_OUTPUT
|
||||
ERROR_VARIABLE CYTHON_VAR_OUTPUT
|
||||
OUTPUT_STRIP_TRAILING_WHITESPACE
|
||||
)
|
||||
if ( RESULT EQUAL 0 )
|
||||
string( REGEX REPLACE ".* ([0-9]+\\.[0-9]+(\\.[0-9]+)?).*" "\\1"
|
||||
CYTHON_VERSION "${CYTHON_VAR_OUTPUT}" )
|
||||
endif ()
|
||||
endif ()
|
||||
|
||||
include( FindPackageHandleStandardArgs )
|
||||
find_package_handle_standard_args( Cython
|
||||
FOUND_VAR
|
||||
CYTHON_FOUND
|
||||
REQUIRED_VARS
|
||||
CYTHON_PATH
|
||||
CYTHON_EXECUTABLE
|
||||
VERSION_VAR
|
||||
CYTHON_VERSION
|
||||
)
|
||||
|
|
@ -83,10 +83,20 @@ FIND_PATH(MKL_FFTW_INCLUDE_DIR
|
|||
NO_DEFAULT_PATH
|
||||
)
|
||||
|
||||
IF(WIN32)
|
||||
IF(WIN32 AND MKL_ROOT_DIR)
|
||||
SET(MKL_LIB_SEARCHPATH $ENV{ICC_LIB_DIR} $ENV{MKL_LIB_DIR} "${MKL_ROOT_DIR}/lib/${MKL_ARCH_DIR}" "${MKL_ROOT_DIR}/../compiler" "${MKL_ROOT_DIR}/../compiler/lib/${MKL_ARCH_DIR}")
|
||||
|
||||
IF (MKL_INCLUDE_DIR MATCHES "10.")
|
||||
IF(MKL_INCLUDE_DIR MATCHES "2017" OR MKL_INCLUDE_DIR MATCHES "2018")
|
||||
IF(CMAKE_CL_64)
|
||||
SET(MKL_LIBS mkl_core mkl_intel_lp64 mkl_lapack95_lp64 mkl_blas95_lp64)
|
||||
ELSE()
|
||||
SET(MKL_LIBS mkl_core mkl_intel_s mkl_lapack95 mkl_blas95)
|
||||
ENDIF()
|
||||
IF(TBB_FOUND AND GTSAM_WITH_TBB)
|
||||
SET(MKL_LIBS ${MKL_LIBS} mkl_tbb_thread)
|
||||
ELSE()
|
||||
SET(MKL_LIBS ${MKL_LIBS} mkl_intel_thread libiomp5md)
|
||||
ENDIF()
|
||||
ELSEIF(MKL_INCLUDE_DIR MATCHES "10.")
|
||||
IF(CMAKE_CL_64)
|
||||
SET(MKL_LIBS mkl_solver_lp64 mkl_core mkl_intel_lp64 mkl_intel_thread libguide mkl_lapack95_lp64 mkl_blas95_lp64)
|
||||
ELSE()
|
||||
|
@ -115,7 +125,7 @@ IF(WIN32)
|
|||
ENDIF()
|
||||
ENDFOREACH()
|
||||
SET(MKL_FOUND ON)
|
||||
ELSE() # UNIX and macOS
|
||||
ELSEIF(MKL_ROOT_DIR) # UNIX and macOS
|
||||
FIND_LIBRARY(MKL_CORE_LIBRARY
|
||||
mkl_core
|
||||
PATHS
|
||||
|
|
|
@ -82,6 +82,10 @@ if (WIN32)
|
|||
set(_TBB_COMPILER "vc11")
|
||||
set(TBB_COMPILER "vc11")
|
||||
endif(MSVC11)
|
||||
if(MSVC14)
|
||||
set(_TBB_COMPILER "vc14")
|
||||
set(TBB_COMPILER "vc14")
|
||||
endif(MSVC14)
|
||||
# Todo: add other Windows compilers such as ICL.
|
||||
if(TBB_ARCHITECTURE)
|
||||
set(_TBB_ARCHITECTURE ${TBB_ARCHITECTURE})
|
||||
|
|
|
@ -0,0 +1,246 @@
|
|||
# Check Cython version, need to be >=0.25.2
|
||||
# Unset these cached variables to avoid surprises when the python/cython
|
||||
# in the current environment are different from the cached!
|
||||
unset(PYTHON_EXECUTABLE CACHE)
|
||||
unset(CYTHON_EXECUTABLE CACHE)
|
||||
find_package(Cython 0.25.2 REQUIRED)
|
||||
|
||||
# User-friendly Cython wrapping and installing function.
|
||||
# Builds a Cython module from the provided interface_header.
|
||||
# For example, for the interface header gtsam.h,
|
||||
# this will build the wrap module 'gtsam'.
|
||||
#
|
||||
# Arguments:
|
||||
#
|
||||
# interface_header: The relative path to the wrapper interface definition file.
|
||||
# extra_imports: extra header to import in the Cython pxd file.
|
||||
# For example, to use Cython gtsam.pxd in your own module,
|
||||
# use "from gtsam cimport *"
|
||||
# install_path: destination to install the library
|
||||
# libs: libraries to link with
|
||||
# dependencies: Dependencies which need to be built before the wrapper
|
||||
function(wrap_and_install_library_cython interface_header extra_imports install_path libs dependencies)
|
||||
# Paths for generated files
|
||||
get_filename_component(module_name "${interface_header}" NAME_WE)
|
||||
set(generated_files_path "${PROJECT_BINARY_DIR}/cython/${module_name}")
|
||||
wrap_library_cython("${interface_header}" "${generated_files_path}" "${extra_imports}" "${libs}" "${dependencies}")
|
||||
install_cython_wrapped_library("${interface_header}" "${generated_files_path}" "${install_path}")
|
||||
endfunction()
|
||||
|
||||
function(set_up_required_cython_packages)
|
||||
# Set up building of cython module
|
||||
find_package(PythonLibs 2.7 REQUIRED)
|
||||
include_directories(${PYTHON_INCLUDE_DIRS})
|
||||
find_package(NumPy REQUIRED)
|
||||
include_directories(${NUMPY_INCLUDE_DIRS})
|
||||
endfunction()
|
||||
|
||||
# Convert pyx to cpp by executing cython
|
||||
# This is the first step to compile cython from the command line
|
||||
# as described at: http://cython.readthedocs.io/en/latest/src/reference/compilation.html
|
||||
#
|
||||
# Arguments:
|
||||
# - target: The specified target for this step
|
||||
# - pyx_file: The input pyx_file in full *absolute* path
|
||||
# - generated_cpp: The output cpp file in full absolute path
|
||||
# - include_dirs: Directories to include when executing cython
|
||||
function(pyx_to_cpp target pyx_file generated_cpp include_dirs)
|
||||
foreach(dir ${include_dirs})
|
||||
set(includes_for_cython ${includes_for_cython} -I ${dir})
|
||||
endforeach()
|
||||
|
||||
add_custom_command(
|
||||
OUTPUT ${generated_cpp}
|
||||
COMMAND
|
||||
${CYTHON_EXECUTABLE} -X boundscheck=False -v --fast-fail --cplus ${includes_for_cython} ${pyx_file} -o ${generated_cpp}
|
||||
VERBATIM)
|
||||
add_custom_target(${target} ALL DEPENDS ${generated_cpp})
|
||||
endfunction()
|
||||
|
||||
# Build the cpp file generated by converting pyx using cython
|
||||
# This is the second step to compile cython from the command line
|
||||
# as described at: http://cython.readthedocs.io/en/latest/src/reference/compilation.html
|
||||
#
|
||||
# Arguments:
|
||||
# - target: The specified target for this step
|
||||
# - cpp_file: The input cpp_file in full *absolute* path
|
||||
# - output_lib_we: The output lib filename only (without extension)
|
||||
# - output_dir: The output directory
|
||||
function(build_cythonized_cpp target cpp_file output_lib_we output_dir)
|
||||
add_library(${target} MODULE ${cpp_file})
|
||||
if(APPLE)
|
||||
set(link_flags "-undefined dynamic_lookup")
|
||||
endif()
|
||||
set_target_properties(${target} PROPERTIES COMPILE_FLAGS "-w" LINK_FLAGS "${link_flags}"
|
||||
OUTPUT_NAME ${output_lib_we} PREFIX "" LIBRARY_OUTPUT_DIRECTORY ${output_dir})
|
||||
endfunction()
|
||||
|
||||
# Cythonize a pyx from the command line as described at
|
||||
# http://cython.readthedocs.io/en/latest/src/reference/compilation.html
|
||||
# Arguments:
|
||||
# - target: The specified target
|
||||
# - pyx_file: The input pyx_file in full *absolute* path
|
||||
# - output_lib_we: The output lib filename only (without extension)
|
||||
# - output_dir: The output directory
|
||||
# - include_dirs: Directories to include when executing cython
|
||||
# - libs: Libraries to link with
|
||||
# - interface_header: For dependency. Any update in interface header will re-trigger cythonize
|
||||
function(cythonize target pyx_file output_lib_we output_dir include_dirs libs interface_header dependencies)
|
||||
get_filename_component(pyx_path "${pyx_file}" DIRECTORY)
|
||||
get_filename_component(pyx_name "${pyx_file}" NAME_WE)
|
||||
set(generated_cpp "${output_dir}/${pyx_name}.cpp")
|
||||
|
||||
set_up_required_cython_packages()
|
||||
pyx_to_cpp(${target}_pyx2cpp ${pyx_file} ${generated_cpp} "${include_dirs}")
|
||||
|
||||
# Late dependency injection, to make sure this gets called whenever the interface header is updated
|
||||
# See: https://stackoverflow.com/questions/40032593/cmake-does-not-rebuild-dependent-after-prerequisite-changes
|
||||
add_custom_command(OUTPUT ${generated_cpp} DEPENDS ${interface_header} ${pyx_file} APPEND)
|
||||
if (NOT "${dependencies}" STREQUAL "")
|
||||
add_dependencies(${target}_pyx2cpp "${dependencies}")
|
||||
endif()
|
||||
|
||||
build_cythonized_cpp(${target} ${generated_cpp} ${output_lib_we} ${output_dir})
|
||||
if (NOT "${libs}" STREQUAL "")
|
||||
target_link_libraries(${target} "${libs}")
|
||||
endif()
|
||||
add_dependencies(${target} ${target}_pyx2cpp)
|
||||
endfunction()
|
||||
|
||||
# Internal function that wraps a library and compiles the wrapper
|
||||
function(wrap_library_cython interface_header generated_files_path extra_imports libs dependencies)
|
||||
# Wrap codegen interface
|
||||
# Extract module path and name from interface header file name
|
||||
# wrap requires interfacePath to be *absolute*
|
||||
get_filename_component(interface_header "${interface_header}" ABSOLUTE)
|
||||
get_filename_component(module_path "${interface_header}" PATH)
|
||||
get_filename_component(module_name "${interface_header}" NAME_WE)
|
||||
|
||||
# Wrap module to Cython pyx
|
||||
message(STATUS "Cython wrapper generating ${module_name}.pyx")
|
||||
set(generated_pyx "${generated_files_path}/${module_name}.pyx")
|
||||
file(MAKE_DIRECTORY "${generated_files_path}")
|
||||
add_custom_command(
|
||||
OUTPUT ${generated_pyx}
|
||||
DEPENDS ${interface_header} wrap
|
||||
COMMAND
|
||||
wrap --cython ${module_path} ${module_name} ${generated_files_path} "${extra_imports}"
|
||||
VERBATIM
|
||||
WORKING_DIRECTORY ${generated_files_path}/../)
|
||||
add_custom_target(cython_wrap_${module_name}_pyx ALL DEPENDS ${generated_pyx})
|
||||
if(NOT "${dependencies}" STREQUAL "")
|
||||
add_dependencies(cython_wrap_${module_name}_pyx ${dependencies})
|
||||
endif()
|
||||
|
||||
message(STATUS "Cythonize and build ${module_name}.pyx")
|
||||
get_property(include_dirs DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR} PROPERTY INCLUDE_DIRECTORIES)
|
||||
cythonize(cythonize_${module_name} ${generated_pyx} ${module_name}
|
||||
${generated_files_path} "${include_dirs}" "${libs}" ${interface_header} cython_wrap_${module_name}_pyx)
|
||||
|
||||
# distclean
|
||||
add_custom_target(wrap_${module_name}_cython_distclean
|
||||
COMMAND cmake -E remove_directory ${generated_files_path})
|
||||
endfunction()
|
||||
|
||||
# Internal function that installs a wrap toolbox
|
||||
function(install_cython_wrapped_library interface_header generated_files_path install_path)
|
||||
get_filename_component(module_name "${interface_header}" NAME_WE)
|
||||
|
||||
# NOTE: only installs .pxd and .pyx and binary files (not .cpp) - the trailing slash on the directory name
|
||||
# here prevents creating the top-level module name directory in the destination.
|
||||
message(STATUS "Installing Cython Toolbox to ${install_path}") #${GTSAM_CYTHON_INSTALL_PATH}")
|
||||
if(GTSAM_BUILD_TYPE_POSTFIXES)
|
||||
foreach(build_type ${CMAKE_CONFIGURATION_TYPES})
|
||||
string(TOUPPER "${build_type}" build_type_upper)
|
||||
if(${build_type_upper} STREQUAL "RELEASE")
|
||||
set(build_type_tag "") # Don't create release mode tag on installed directory
|
||||
else()
|
||||
set(build_type_tag "${build_type}")
|
||||
endif()
|
||||
# Split up filename to strip trailing '/' in GTSAM_CYTHON_INSTALL_PATH if there is one
|
||||
get_filename_component(location "${install_path}" PATH)
|
||||
get_filename_component(name "${install_path}" NAME)
|
||||
install(DIRECTORY "${generated_files_path}/" DESTINATION "${location}/${name}${build_type_tag}"
|
||||
CONFIGURATIONS "${build_type}"
|
||||
PATTERN "build" EXCLUDE
|
||||
PATTERN "CMakeFiles" EXCLUDE
|
||||
PATTERN "Makefile" EXCLUDE
|
||||
PATTERN "*.cmake" EXCLUDE
|
||||
PATTERN "*.cpp" EXCLUDE
|
||||
PATTERN "*.py" EXCLUDE)
|
||||
endforeach()
|
||||
else()
|
||||
install(DIRECTORY "${generated_files_path}/" DESTINATION ${install_path}
|
||||
PATTERN "build" EXCLUDE
|
||||
PATTERN "CMakeFiles" EXCLUDE
|
||||
PATTERN "Makefile" EXCLUDE
|
||||
PATTERN "*.cmake" EXCLUDE
|
||||
PATTERN "*.cpp" EXCLUDE
|
||||
PATTERN "*.py" EXCLUDE)
|
||||
endif()
|
||||
endfunction()
|
||||
|
||||
# Helper function to install Cython scripts and handle multiple build types where the scripts
|
||||
# should be installed to all build type toolboxes
|
||||
#
|
||||
# Arguments:
|
||||
# source_directory: The source directory to be installed. "The last component of each directory
|
||||
# name is appended to the destination directory but a trailing slash may be
|
||||
# used to avoid this because it leaves the last component empty."
|
||||
# (https://cmake.org/cmake/help/v3.3/command/install.html?highlight=install#installing-directories)
|
||||
# dest_directory: The destination directory to install to.
|
||||
# patterns: list of file patterns to install
|
||||
function(install_cython_scripts source_directory dest_directory patterns)
|
||||
set(patterns_args "")
|
||||
set(exclude_patterns "")
|
||||
|
||||
foreach(pattern ${patterns})
|
||||
list(APPEND patterns_args PATTERN "${pattern}")
|
||||
endforeach()
|
||||
if(GTSAM_BUILD_TYPE_POSTFIXES)
|
||||
foreach(build_type ${CMAKE_CONFIGURATION_TYPES})
|
||||
string(TOUPPER "${build_type}" build_type_upper)
|
||||
if(${build_type_upper} STREQUAL "RELEASE")
|
||||
set(build_type_tag "") # Don't create release mode tag on installed directory
|
||||
else()
|
||||
set(build_type_tag "${build_type}")
|
||||
endif()
|
||||
# Split up filename to strip trailing '/' in GTSAM_CYTHON_INSTALL_PATH if there is one
|
||||
get_filename_component(location "${dest_directory}" PATH)
|
||||
get_filename_component(name "${dest_directory}" NAME)
|
||||
install(DIRECTORY "${source_directory}" DESTINATION "${location}/${name}${build_type_tag}" CONFIGURATIONS "${build_type}"
|
||||
FILES_MATCHING ${patterns_args} PATTERN "${exclude_patterns}" EXCLUDE)
|
||||
endforeach()
|
||||
else()
|
||||
install(DIRECTORY "${source_directory}" DESTINATION "${dest_directory}" FILES_MATCHING ${patterns_args} PATTERN "${exclude_patterns}" EXCLUDE)
|
||||
endif()
|
||||
|
||||
endfunction()
|
||||
|
||||
# Helper function to install specific files and handle multiple build types where the scripts
|
||||
# should be installed to all build type toolboxes
|
||||
#
|
||||
# Arguments:
|
||||
# source_files: The source files to be installed.
|
||||
# dest_directory: The destination directory to install to.
|
||||
function(install_cython_files source_files dest_directory)
|
||||
|
||||
if(GTSAM_BUILD_TYPE_POSTFIXES)
|
||||
foreach(build_type ${CMAKE_CONFIGURATION_TYPES})
|
||||
string(TOUPPER "${build_type}" build_type_upper)
|
||||
if(${build_type_upper} STREQUAL "RELEASE")
|
||||
set(build_type_tag "") # Don't create release mode tag on installed directory
|
||||
else()
|
||||
set(build_type_tag "${build_type}")
|
||||
endif()
|
||||
# Split up filename to strip trailing '/' in GTSAM_CYTHON_INSTALL_PATH if there is one
|
||||
get_filename_component(location "${dest_directory}" PATH)
|
||||
get_filename_component(name "${dest_directory}" NAME)
|
||||
install(FILES "${source_files}" DESTINATION "${location}/${name}${build_type_tag}" CONFIGURATIONS "${build_type}")
|
||||
endforeach()
|
||||
else()
|
||||
install(FILES "${source_files}" DESTINATION "${dest_directory}")
|
||||
endif()
|
||||
|
||||
endfunction()
|
||||
|
|
@ -208,7 +208,7 @@ function(wrap_library_internal interfaceHeader linkLibraries extraIncludeDirs ex
|
|||
OUTPUT ${generated_cpp_file}
|
||||
DEPENDS ${interfaceHeader} wrap ${module_library_target} ${otherLibraryTargets} ${otherSourcesAndObjects}
|
||||
COMMAND
|
||||
wrap
|
||||
wrap --matlab
|
||||
${modulePath}
|
||||
${moduleName}
|
||||
${generated_files_path}
|
||||
|
@ -219,9 +219,9 @@ function(wrap_library_internal interfaceHeader linkLibraries extraIncludeDirs ex
|
|||
# Set up building of mex module
|
||||
string(REPLACE ";" " " extraMexFlagsSpaced "${extraMexFlags}")
|
||||
string(REPLACE ";" " " mexFlagsSpaced "${GTSAM_BUILD_MEX_BINARY_FLAGS}")
|
||||
add_library(${moduleName}_wrapper MODULE ${generated_cpp_file} ${interfaceHeader} ${otherSourcesAndObjects})
|
||||
target_link_libraries(${moduleName}_wrapper ${correctedOtherLibraries})
|
||||
set_target_properties(${moduleName}_wrapper PROPERTIES
|
||||
add_library(${moduleName}_matlab_wrapper MODULE ${generated_cpp_file} ${interfaceHeader} ${otherSourcesAndObjects})
|
||||
target_link_libraries(${moduleName}_matlab_wrapper ${correctedOtherLibraries})
|
||||
set_target_properties(${moduleName}_matlab_wrapper PROPERTIES
|
||||
OUTPUT_NAME "${moduleName}_wrapper"
|
||||
PREFIX ""
|
||||
SUFFIX ".${mexModuleExt}"
|
||||
|
@ -229,12 +229,12 @@ function(wrap_library_internal interfaceHeader linkLibraries extraIncludeDirs ex
|
|||
ARCHIVE_OUTPUT_DIRECTORY "${compiled_mex_modules_root}"
|
||||
RUNTIME_OUTPUT_DIRECTORY "${compiled_mex_modules_root}"
|
||||
CLEAN_DIRECT_OUTPUT 1)
|
||||
set_property(TARGET ${moduleName}_wrapper APPEND_STRING PROPERTY COMPILE_FLAGS " ${extraMexFlagsSpaced} ${mexFlagsSpaced} \"-I${MATLAB_ROOT}/extern/include\" -DMATLAB_MEX_FILE -DMX_COMPAT_32")
|
||||
set_property(TARGET ${moduleName}_wrapper APPEND PROPERTY INCLUDE_DIRECTORIES ${extraIncludeDirs})
|
||||
set_property(TARGET ${moduleName}_matlab_wrapper APPEND_STRING PROPERTY COMPILE_FLAGS " ${extraMexFlagsSpaced} ${mexFlagsSpaced} \"-I${MATLAB_ROOT}/extern/include\" -DMATLAB_MEX_FILE -DMX_COMPAT_32")
|
||||
set_property(TARGET ${moduleName}_matlab_wrapper APPEND PROPERTY INCLUDE_DIRECTORIES ${extraIncludeDirs})
|
||||
# Disable build type postfixes for the mex module - we install in different directories for each build type instead
|
||||
foreach(build_type ${CMAKE_CONFIGURATION_TYPES})
|
||||
string(TOUPPER "${build_type}" build_type_upper)
|
||||
set_target_properties(${moduleName}_wrapper PROPERTIES ${build_type_upper}_POSTFIX "")
|
||||
set_target_properties(${moduleName}_matlab_wrapper PROPERTIES ${build_type_upper}_POSTFIX "")
|
||||
endforeach()
|
||||
# Set up platform-specific flags
|
||||
if(MSVC)
|
||||
|
@ -243,17 +243,17 @@ function(wrap_library_internal interfaceHeader linkLibraries extraIncludeDirs ex
|
|||
else()
|
||||
set(mxLibPath "${MATLAB_ROOT}/extern/lib/win32/microsoft")
|
||||
endif()
|
||||
target_link_libraries(${moduleName}_wrapper "${mxLibPath}/libmex.lib" "${mxLibPath}/libmx.lib" "${mxLibPath}/libmat.lib")
|
||||
set_target_properties(${moduleName}_wrapper PROPERTIES LINK_FLAGS "/export:mexFunction")
|
||||
target_link_libraries(${moduleName}_matlab_wrapper "${mxLibPath}/libmex.lib" "${mxLibPath}/libmx.lib" "${mxLibPath}/libmat.lib")
|
||||
set_target_properties(${moduleName}_matlab_wrapper PROPERTIES LINK_FLAGS "/export:mexFunction")
|
||||
set_property(SOURCE "${generated_cpp_file}" APPEND PROPERTY COMPILE_FLAGS "/bigobj")
|
||||
elseif(APPLE)
|
||||
set(mxLibPath "${MATLAB_ROOT}/bin/maci64")
|
||||
target_link_libraries(${moduleName}_wrapper "${mxLibPath}/libmex.dylib" "${mxLibPath}/libmx.dylib" "${mxLibPath}/libmat.dylib")
|
||||
target_link_libraries(${moduleName}_matlab_wrapper "${mxLibPath}/libmex.dylib" "${mxLibPath}/libmx.dylib" "${mxLibPath}/libmat.dylib")
|
||||
endif()
|
||||
|
||||
# Hacking around output issue with custom command
|
||||
# Deletes generated build folder
|
||||
add_custom_target(wrap_${moduleName}_distclean
|
||||
add_custom_target(wrap_${moduleName}_matlab_distclean
|
||||
COMMAND cmake -E remove_directory ${generated_files_path}
|
||||
COMMAND cmake -E remove_directory ${compiled_mex_modules_root})
|
||||
endfunction()
|
||||
|
@ -278,13 +278,13 @@ function(install_wrapped_library_internal interfaceHeader)
|
|||
get_filename_component(location "${GTSAM_TOOLBOX_INSTALL_PATH}" PATH)
|
||||
get_filename_component(name "${GTSAM_TOOLBOX_INSTALL_PATH}" NAME)
|
||||
install(DIRECTORY "${generated_files_path}/" DESTINATION "${location}/${name}${build_type_tag}" CONFIGURATIONS "${build_type}" FILES_MATCHING PATTERN "*.m")
|
||||
install(TARGETS ${moduleName}_wrapper
|
||||
install(TARGETS ${moduleName}_matlab_wrapper
|
||||
LIBRARY DESTINATION "${location}/${name}${build_type_tag}" CONFIGURATIONS "${build_type}"
|
||||
RUNTIME DESTINATION "${location}/${name}${build_type_tag}" CONFIGURATIONS "${build_type}")
|
||||
endforeach()
|
||||
else()
|
||||
install(DIRECTORY "${generated_files_path}/" DESTINATION ${GTSAM_TOOLBOX_INSTALL_PATH} FILES_MATCHING PATTERN "*.m")
|
||||
install(TARGETS ${moduleName}_wrapper
|
||||
install(TARGETS ${moduleName}_matlab_wrapper
|
||||
LIBRARY DESTINATION ${GTSAM_TOOLBOX_INSTALL_PATH}
|
||||
RUNTIME DESTINATION ${GTSAM_TOOLBOX_INSTALL_PATH})
|
||||
endif()
|
||||
|
|
|
@ -0,0 +1,40 @@
|
|||
# Install cython components
|
||||
include(GtsamCythonWrap)
|
||||
|
||||
# Create the cython toolbox for the gtsam library
|
||||
if (GTSAM_INSTALL_CYTHON_TOOLBOX)
|
||||
# build and include the eigency version of eigency
|
||||
add_subdirectory(gtsam_eigency)
|
||||
include_directories(${PROJECT_BINARY_DIR}/cython/gtsam_eigency)
|
||||
|
||||
# wrap gtsam
|
||||
add_custom_target(gtsam_header DEPENDS "../gtsam.h")
|
||||
wrap_and_install_library_cython("../gtsam.h" # interface_header
|
||||
"" # extra imports
|
||||
"${GTSAM_CYTHON_INSTALL_PATH}/gtsam" # install path
|
||||
gtsam # library to link with
|
||||
"wrap;cythonize_eigency;gtsam;gtsam_header" # dependencies which need to be built before wrapping
|
||||
)
|
||||
|
||||
# wrap gtsam_unstable
|
||||
if(GTSAM_BUILD_UNSTABLE)
|
||||
add_custom_target(gtsam_unstable_header DEPENDS "../gtsam_unstable/gtsam_unstable.h")
|
||||
set(GTSAM_UNSTABLE_IMPORT "from gtsam_unstable import *")
|
||||
wrap_and_install_library_cython("../gtsam_unstable/gtsam_unstable.h" # interface_header
|
||||
"from gtsam.gtsam cimport *" # extra imports
|
||||
"${GTSAM_CYTHON_INSTALL_PATH}/gtsam" # install path
|
||||
gtsam_unstable # library to link with
|
||||
"gtsam_unstable;gtsam_unstable_header;cythonize_gtsam" # dependencies to be built before wrapping
|
||||
)
|
||||
# for some reasons cython gtsam_unstable can't find gtsam/gtsam.pxd without doing this
|
||||
file(WRITE ${PROJECT_BINARY_DIR}/cython/gtsam_unstable/__init__.py "")
|
||||
endif()
|
||||
|
||||
# Install the custom-generated __init__.py
|
||||
# This is to make the build/cython/gtsam folder a python package, so gtsam can be found while wrapping gtsam_unstable
|
||||
configure_file(${PROJECT_SOURCE_DIR}/cython/gtsam/__init__.py.in ${PROJECT_BINARY_DIR}/cython/gtsam/__init__.py)
|
||||
install_cython_files("${PROJECT_BINARY_DIR}/cython/gtsam/__init__.py" "${GTSAM_CYTHON_INSTALL_PATH}/gtsam")
|
||||
# install scripts and tests
|
||||
install_cython_scripts("${PROJECT_SOURCE_DIR}/cython/gtsam" "${GTSAM_CYTHON_INSTALL_PATH}" "*.py")
|
||||
|
||||
endif ()
|
|
@ -0,0 +1,154 @@
|
|||
This is the Cython/Python wrapper around the GTSAM C++ library.
|
||||
|
||||
INSTALL
|
||||
=======
|
||||
- This wrapper needs Cython(>=0.25.2), backports_abc>=0.5, and numpy. These can be installed as follows:
|
||||
|
||||
```bash
|
||||
pip install -r <gtsam_folder>/cython/requirements.txt
|
||||
```
|
||||
|
||||
- For compatiblity with gtsam's Eigen version, it contains its own cloned version of [Eigency](https://github.com/wouterboomsma/eigency.git),
|
||||
named **gtsam_eigency**, to interface between C++'s Eigen and Python's numpy.
|
||||
|
||||
- Build and install gtsam using cmake with GTSAM_INSTALL_CYTHON_TOOLBOX enabled.
|
||||
The wrapped module will be installed to GTSAM_CYTHON_INSTALL_PATH, which is
|
||||
by default: <your CMAKE_INSTALL_PREFIX>/cython
|
||||
|
||||
- Modify your PYTHONPATH to include the GTSAM_CYTHON_INSTALL_PATH:
|
||||
```bash
|
||||
export PYTHONPATH=$PYTHONPATH:<GTSAM_CYTHON_INSTALL_PATH>
|
||||
```
|
||||
|
||||
UNIT TESTS
|
||||
==========
|
||||
The Cython toolbox also has a small set of unit tests located in the
|
||||
test directory. To run them:
|
||||
|
||||
```bash
|
||||
cd <your GTSAM_CYTHON_INSTALL_PATH>
|
||||
python -m unittest discover
|
||||
```
|
||||
|
||||
WRITING YOUR OWN SCRIPTS
|
||||
========================
|
||||
See the tests for examples.
|
||||
|
||||
## Some important notes:
|
||||
|
||||
- Vector/Matrix:
|
||||
+ GTSAM expects double-precision floating point vectors and matrices.
|
||||
Hence, you should pass numpy matrices with dtype=float, or 'float64'.
|
||||
+ Also, GTSAM expects *column-major* matrices, unlike the default storage
|
||||
scheme in numpy. Hence, you should pass column-major matrices to gtsam using
|
||||
the flag order='F'. And you always get column-major matrices back.
|
||||
For more details, see: https://github.com/wouterboomsma/eigency#storage-layout---why-arrays-are-sometimes-transposed
|
||||
+ Passing row-major matrices of different dtype, e.g. 'int', will also work
|
||||
as the wrapper converts them to column-major and dtype float for you,
|
||||
using numpy.array.astype(float, order='F', copy=False).
|
||||
However, this will result a copy if your matrix is not in the expected type
|
||||
and storage order.
|
||||
|
||||
- Inner namespace: Classes in inner namespace will be prefixed by <innerNamespace>_ in Python.
|
||||
Examples: noiseModel_Gaussian, noiseModel_mEstimator_Tukey
|
||||
|
||||
- Casting from a base class to a derive class must be done explicitly.
|
||||
Examples:
|
||||
```Python
|
||||
noiseBase = factor.get_noiseModel()
|
||||
noiseGaussian = dynamic_cast_noiseModel_Gaussian_noiseModel_Base(noiseBase)
|
||||
```
|
||||
|
||||
WRAPPING YOUR OWN PROJECT THAT USES GTSAM
|
||||
=========================================
|
||||
- Set PYTHONPATH to include ${GTSAM_CYTHON_INSTALL_PATH}
|
||||
+ so that it can find gtsam Cython header: gtsam/gtsam.pxd
|
||||
|
||||
- In your CMakeList.txt
|
||||
```cmake
|
||||
find_package(GTSAM REQUIRED) # Make sure gtsam's install folder is in your PATH
|
||||
set(CMAKE_MODULE_PATH "${CMAKE_MODULE_PATH}" "${GTSAM_DIR}/../GTSAMCMakeTools")
|
||||
|
||||
# Wrap
|
||||
include(GtsamCythonWrap)
|
||||
include_directories(${GTSAM_EIGENCY_INSTALL_PATH})
|
||||
wrap_and_install_library_cython("your_project_interface.h"
|
||||
"from gtsam.gtsam cimport *" # extra import of gtsam/gtsam.pxd Cython header
|
||||
"your_install_path"
|
||||
"libraries_to_link_with_the_cython_module"
|
||||
"dependencies_which_need_to_be_built_before_the_wrapper"
|
||||
)
|
||||
#Optional: install_cython_scripts and install_cython_files. See GtsamCythonWrap.cmake.
|
||||
```
|
||||
|
||||
KNOWN ISSUES
|
||||
============
|
||||
- Doesn't work with python3 installed from homebrew
|
||||
- size-related issue: can only wrap up to a certain number of classes: up to mEstimator!
|
||||
- Guess: 64 vs 32b? disutils Compiler flags?
|
||||
- Bug with Cython 0.24: instantiated factor classes return FastVector<size_t> for keys(), which can't be casted to FastVector<Key>
|
||||
- Upgrading to 0.25 solves the problem
|
||||
- Need default constructor and default copy constructor for almost every classes... :(
|
||||
- support these constructors by default and declare "delete" for special classes?
|
||||
|
||||
|
||||
TODO
|
||||
=====
|
||||
☐ allow duplication of parent' functions in child classes. Not allowed for now due to conflicts in Cython.
|
||||
☐ a common header for boost shared_ptr? (Or wait until everything is switched to std::shared_ptr in gtsam?)
|
||||
☐ inner namespaces ==> inner packages?
|
||||
☐ Wrap fixed-size Matrices/Vectors?
|
||||
|
||||
|
||||
Completed/Cancelled:
|
||||
=====
|
||||
✔ Fix Python tests: don't use " import <package> * ": Bad style!!! @done (18-03-17 19:50)
|
||||
✔ Unit tests for cython wrappers @done (18-03-17 18:45) -- simply compare generated files
|
||||
✔ Wrap unstable @done (18-03-17 15:30)
|
||||
✔ Unify cython/gtsam.h and the original gtsam.h @done (18-03-17 15:30)
|
||||
✔ 18-03-17: manage to unify the two versions by removing std container stubs from the matlab version,and keeping KeyList/KeyVector/KeySet as in the matlab version. Probably Cython 0.25 fixes the casting problem.
|
||||
✔ 06-03-17: manage to remove the requirements for default and copy constructors
|
||||
✘ 25-11-16:
|
||||
Try to unify but failed. Main reasons are: Key/size_t, std containers, KeyVector/KeyList/KeySet.
|
||||
Matlab doesn't need to know about Key, but I can't make Cython to ignore Key as it couldn't cast KeyVector, i.e. FastVector<Key>, to FastVector<size_t>.
|
||||
✘ Marginal and JointMarginal: revert changes @failed (17-03-17 11:00) -- Cython does need a default constructor! It produces cpp code like this: ```gtsam::JointMarginal __pyx_t_1;``` Users don't have to wrap this constructor, however.
|
||||
✔ Convert input numpy Matrix/Vector to float dtype and storage order 'F' automatically, cannot crash! @done (15-03-17 13:00)
|
||||
✔ Remove requirements.txt - Frank: don't bother with only 2 packages and a special case for eigency! @done (08-03-17 10:30)
|
||||
✔ CMake install script @done (25-11-16 02:30)
|
||||
✘ [REFACTOR] better name for uninstantiateClass: very vague!! @cancelled (25-11-16 02:30) -- lazy
|
||||
✘ forward declaration? @cancelled (23-11-16 13:00) - nothing to do, seem to work?
|
||||
✔ wrap VariableIndex: why is it in inference? If need to, shouldn't have constructors to specific FactorGraphs @done (23-11-16 13:00)
|
||||
✔ Global functions @done (22-11-16 21:00)
|
||||
✔ [REFACTOR] typesEqual --> isSameSignature @done (22-11-16 21:00)
|
||||
✔ Proper overloads (constructors, static methods, methods) @done (20-11-16 21:00)
|
||||
✔ Allow overloading methods. The current solution is annoying!!! @done (20-11-16 21:00)
|
||||
✔ Casting from parent and grandparents @done (16-11-16 17:00)
|
||||
✔ Allow overloading constructors. The current solution is annoying!!! @done (16-11-16 17:00)
|
||||
✔ Support "print obj" @done (16-11-16 17:00)
|
||||
✔ methods for FastVector: at, [], ... @done (16-11-16 17:00)
|
||||
✔ Cython: Key and size_t: traits<size_t> doesn't exist @done (16-09-12 18:34)
|
||||
✔ KeyVector, KeyList, KeySet... @done (16-09-13 17:19)
|
||||
✔ [Nice to have] parse typedef @done (16-09-13 17:19)
|
||||
✔ ctypedef at correct places @done (16-09-12 18:34)
|
||||
✔ expand template variable type in constructor/static methods? @done (16-09-12 18:34)
|
||||
✔ NonlinearOptimizer: copy constructor deleted!!! @done (16-09-13 17:20)
|
||||
✔ Value: no default constructor @done (16-09-13 17:20)
|
||||
✔ ctypedef PriorFactor[Vector] PriorFactorVector @done (16-09-19 12:25)
|
||||
✔ Delete duplicate methods in derived class @done (16-09-12 13:38)
|
||||
✔ Fix return properly @done (16-09-11 17:14)
|
||||
✔ handle pair @done (16-09-11 17:14)
|
||||
✔ Eigency: ambiguous call: A(const T&) A(const Vector& v) and Eigency A(Map[Vector]& v) @done (16-09-11 07:59)
|
||||
✔ Eigency: Constructor: ambiguous construct from Vector/Matrix @done (16-09-11 07:59)
|
||||
✔ Eigency: Fix method template of Vector/Matrix: template argument is [Vector] while arugment is Map[Vector] @done (16-09-11 08:22)
|
||||
✔ Robust noise: copy assignment operator is deleted because of shared_ptr of the abstract Base class @done (16-09-10 09:05)
|
||||
✘ Cython: Constructor: generate default constructor? (hack: if it's serializable?) @cancelled (16-09-13 17:20)
|
||||
✘ Eigency: Map[] to Block @created(16-09-10 07:59) @cancelled (16-09-11 08:28)
|
||||
|
||||
- inference before symbolic/linear
|
||||
- what's the purpose of "virtual" ??
|
||||
|
||||
Installation:
|
||||
☐ Prerequisite:
|
||||
- Users create venv and pip install requirements before compiling
|
||||
- Wrap cython script in gtsam/cython folder
|
||||
☐ Install built module into venv?
|
|
@ -0,0 +1,2 @@
|
|||
from gtsam import *
|
||||
${GTSAM_UNSTABLE_IMPORT}
|
|
@ -0,0 +1,176 @@
|
|||
"""
|
||||
iSAM2 example with ImuFactor.
|
||||
Author: Robert Truax (C++), Frank Dellaert (Python)
|
||||
"""
|
||||
# pylint: disable=invalid-name, E1101
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import math
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from mpl_toolkits.mplot3d import Axes3D # pylint: disable=W0611
|
||||
|
||||
import gtsam
|
||||
import gtsam.utils.plot as gtsam_plot
|
||||
|
||||
|
||||
def X(key):
|
||||
"""Create symbol for pose key."""
|
||||
return gtsam.symbol(ord('x'), key)
|
||||
|
||||
|
||||
def V(key):
|
||||
"""Create symbol for velocity key."""
|
||||
return gtsam.symbol(ord('v'), key)
|
||||
|
||||
|
||||
def vector3(x, y, z):
|
||||
"""Create 3d double numpy array."""
|
||||
return np.array([x, y, z], dtype=np.float)
|
||||
|
||||
|
||||
def ISAM2_plot(values, fignum=0):
|
||||
"""Plot poses."""
|
||||
fig = plt.figure(fignum)
|
||||
axes = fig.gca(projection='3d')
|
||||
plt.cla()
|
||||
|
||||
i = 0
|
||||
min_bounds = 0, 0, 0
|
||||
max_bounds = 0, 0, 0
|
||||
while values.exists(X(i)):
|
||||
pose_i = values.atPose3(X(i))
|
||||
gtsam_plot.plot_pose3(fignum, pose_i, 10)
|
||||
position = pose_i.translation().vector()
|
||||
min_bounds = [min(v1, v2) for (v1, v2) in zip(position, min_bounds)]
|
||||
max_bounds = [max(v1, v2) for (v1, v2) in zip(position, max_bounds)]
|
||||
# max_bounds = min(pose_i.x(), max_bounds[0]), 0, 0
|
||||
i += 1
|
||||
|
||||
# draw
|
||||
axes.set_xlim3d(min_bounds[0]-1, max_bounds[0]+1)
|
||||
axes.set_ylim3d(min_bounds[1]-1, max_bounds[1]+1)
|
||||
axes.set_zlim3d(min_bounds[2]-1, max_bounds[2]+1)
|
||||
plt.pause(1)
|
||||
|
||||
|
||||
# IMU preintegration parameters
|
||||
# Default Params for a Z-up navigation frame, such as ENU: gravity points along negative Z-axis
|
||||
g = 9.81
|
||||
n_gravity = vector3(0, 0, -g)
|
||||
PARAMS = gtsam.PreintegrationParams.MakeSharedU(g)
|
||||
I = np.eye(3)
|
||||
PARAMS.setAccelerometerCovariance(I * 0.1)
|
||||
PARAMS.setGyroscopeCovariance(I * 0.1)
|
||||
PARAMS.setIntegrationCovariance(I * 0.1)
|
||||
PARAMS.setUse2ndOrderCoriolis(False)
|
||||
PARAMS.setOmegaCoriolis(vector3(0, 0, 0))
|
||||
|
||||
BIAS_COVARIANCE = gtsam.noiseModel_Isotropic.Variance(6, 0.1)
|
||||
DELTA = gtsam.Pose3(gtsam.Rot3.Rodrigues(0, 0, 0),
|
||||
gtsam.Point3(0.05, -0.10, 0.20))
|
||||
|
||||
|
||||
def IMU_example():
|
||||
"""Run iSAM 2 example with IMU factor."""
|
||||
|
||||
# Start with a camera on x-axis looking at origin
|
||||
radius = 30
|
||||
up = gtsam.Point3(0, 0, 1)
|
||||
target = gtsam.Point3(0, 0, 0)
|
||||
position = gtsam.Point3(radius, 0, 0)
|
||||
camera = gtsam.SimpleCamera.Lookat(position, target, up, gtsam.Cal3_S2())
|
||||
pose_0 = camera.pose()
|
||||
|
||||
# Create the set of ground-truth landmarks and poses
|
||||
angular_velocity = math.radians(180) # rad/sec
|
||||
delta_t = 1.0/18 # makes for 10 degrees per step
|
||||
|
||||
angular_velocity_vector = vector3(0, -angular_velocity, 0)
|
||||
linear_velocity_vector = vector3(radius * angular_velocity, 0, 0)
|
||||
scenario = gtsam.ConstantTwistScenario(
|
||||
angular_velocity_vector, linear_velocity_vector, pose_0)
|
||||
|
||||
# Create a factor graph
|
||||
newgraph = gtsam.NonlinearFactorGraph()
|
||||
|
||||
# Create (incremental) ISAM2 solver
|
||||
isam = gtsam.ISAM2()
|
||||
|
||||
# Create the initial estimate to the solution
|
||||
# Intentionally initialize the variables off from the ground truth
|
||||
initialEstimate = gtsam.Values()
|
||||
|
||||
# Add a prior on pose x0. This indirectly specifies where the origin is.
|
||||
# 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
|
||||
noise = gtsam.noiseModel_Diagonal.Sigmas(
|
||||
np.array([0.3, 0.3, 0.3, 0.1, 0.1, 0.1]))
|
||||
newgraph.push_back(gtsam.PriorFactorPose3(X(0), pose_0, noise))
|
||||
|
||||
# Add imu priors
|
||||
biasKey = gtsam.symbol(ord('b'), 0)
|
||||
biasnoise = gtsam.noiseModel_Isotropic.Sigma(6, 0.1)
|
||||
biasprior = gtsam.PriorFactorConstantBias(biasKey, gtsam.imuBias_ConstantBias(),
|
||||
biasnoise)
|
||||
newgraph.push_back(biasprior)
|
||||
initialEstimate.insert(biasKey, gtsam.imuBias_ConstantBias())
|
||||
velnoise = gtsam.noiseModel_Isotropic.Sigma(3, 0.1)
|
||||
|
||||
# Calculate with correct initial velocity
|
||||
n_velocity = vector3(0, angular_velocity * radius, 0)
|
||||
velprior = gtsam.PriorFactorVector(V(0), n_velocity, velnoise)
|
||||
newgraph.push_back(velprior)
|
||||
initialEstimate.insert(V(0), n_velocity)
|
||||
|
||||
accum = gtsam.PreintegratedImuMeasurements(PARAMS)
|
||||
|
||||
# Simulate poses and imu measurements, adding them to the factor graph
|
||||
for i in range(80):
|
||||
t = i * delta_t # simulation time
|
||||
if i == 0: # First time add two poses
|
||||
pose_1 = scenario.pose(delta_t)
|
||||
initialEstimate.insert(X(0), pose_0.compose(DELTA))
|
||||
initialEstimate.insert(X(1), pose_1.compose(DELTA))
|
||||
elif i >= 2: # Add more poses as necessary
|
||||
pose_i = scenario.pose(t)
|
||||
initialEstimate.insert(X(i), pose_i.compose(DELTA))
|
||||
|
||||
if i > 0:
|
||||
# Add Bias variables periodically
|
||||
if i % 5 == 0:
|
||||
biasKey += 1
|
||||
factor = gtsam.BetweenFactorConstantBias(
|
||||
biasKey - 1, biasKey, gtsam.imuBias_ConstantBias(), BIAS_COVARIANCE)
|
||||
newgraph.add(factor)
|
||||
initialEstimate.insert(biasKey, gtsam.imuBias_ConstantBias())
|
||||
|
||||
# Predict acceleration and gyro measurements in (actual) body frame
|
||||
nRb = scenario.rotation(t).matrix()
|
||||
bRn = np.transpose(nRb)
|
||||
measuredAcc = scenario.acceleration_b(t) - np.dot(bRn, n_gravity)
|
||||
measuredOmega = scenario.omega_b(t)
|
||||
accum.integrateMeasurement(measuredAcc, measuredOmega, delta_t)
|
||||
|
||||
# Add Imu Factor
|
||||
imufac = gtsam.ImuFactor(
|
||||
X(i - 1), V(i - 1), X(i), V(i), biasKey, accum)
|
||||
newgraph.add(imufac)
|
||||
|
||||
# insert new velocity, which is wrong
|
||||
initialEstimate.insert(V(i), n_velocity)
|
||||
accum.resetIntegration()
|
||||
|
||||
# Incremental solution
|
||||
isam.update(newgraph, initialEstimate)
|
||||
result = isam.calculateEstimate()
|
||||
ISAM2_plot(result)
|
||||
|
||||
# reset
|
||||
newgraph = gtsam.NonlinearFactorGraph()
|
||||
initialEstimate.clear()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
IMU_example()
|
|
@ -0,0 +1,52 @@
|
|||
"""
|
||||
GTSAM Copyright 2010-2018, Georgia Tech Research Corporation,
|
||||
Atlanta, Georgia 30332-0415
|
||||
All Rights Reserved
|
||||
Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
See LICENSE for the license information
|
||||
|
||||
Simple robot motion example, with prior and two odometry measurements
|
||||
Author: Frank Dellaert
|
||||
"""
|
||||
# pylint: disable=invalid-name, E1101
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
|
||||
import gtsam
|
||||
|
||||
# Create noise models
|
||||
ODOMETRY_NOISE = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.2, 0.2, 0.1]))
|
||||
PRIOR_NOISE = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.3, 0.3, 0.1]))
|
||||
|
||||
# Create an empty nonlinear factor graph
|
||||
graph = gtsam.NonlinearFactorGraph()
|
||||
|
||||
# Add a prior on the first pose, setting it to the origin
|
||||
# A prior factor consists of a mean and a noise model (covariance matrix)
|
||||
priorMean = gtsam.Pose2(0.0, 0.0, 0.0) # prior at origin
|
||||
graph.add(gtsam.PriorFactorPose2(1, priorMean, PRIOR_NOISE))
|
||||
|
||||
# Add odometry factors
|
||||
odometry = gtsam.Pose2(2.0, 0.0, 0.0)
|
||||
# For simplicity, we will use the same noise model for each odometry factor
|
||||
# Create odometry (Between) factors between consecutive poses
|
||||
graph.add(gtsam.BetweenFactorPose2(1, 2, odometry, ODOMETRY_NOISE))
|
||||
graph.add(gtsam.BetweenFactorPose2(2, 3, odometry, ODOMETRY_NOISE))
|
||||
print("\nFactor Graph:\n{}".format(graph))
|
||||
|
||||
# Create the data structure to hold the initialEstimate estimate to the solution
|
||||
# For illustrative purposes, these have been deliberately set to incorrect values
|
||||
initial = gtsam.Values()
|
||||
initial.insert(1, gtsam.Pose2(0.5, 0.0, 0.2))
|
||||
initial.insert(2, gtsam.Pose2(2.3, 0.1, -0.2))
|
||||
initial.insert(3, gtsam.Pose2(4.1, 0.1, 0.1))
|
||||
print("\nInitial Estimate:\n{}".format(initial))
|
||||
|
||||
# optimize using Levenberg-Marquardt optimization
|
||||
params = gtsam.LevenbergMarquardtParams()
|
||||
optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initial, params)
|
||||
result = optimizer.optimize()
|
||||
print("\nFinal Result:\n{}".format(result))
|
|
@ -0,0 +1,80 @@
|
|||
"""
|
||||
GTSAM Copyright 2010-2018, Georgia Tech Research Corporation,
|
||||
Atlanta, Georgia 30332-0415
|
||||
All Rights Reserved
|
||||
Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
See LICENSE for the license information
|
||||
|
||||
Simple robotics example using odometry measurements and bearing-range (laser) measurements
|
||||
Author: Alex Cunningham (C++), Kevin Deng & Frank Dellaert (Python)
|
||||
"""
|
||||
# pylint: disable=invalid-name, E1101
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
|
||||
import gtsam
|
||||
|
||||
# Create noise models
|
||||
PRIOR_NOISE = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.3, 0.3, 0.1]))
|
||||
ODOMETRY_NOISE = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.2, 0.2, 0.1]))
|
||||
MEASUREMENT_NOISE = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.1, 0.2]))
|
||||
|
||||
# Create an empty nonlinear factor graph
|
||||
graph = gtsam.NonlinearFactorGraph()
|
||||
|
||||
# Create the keys corresponding to unknown variables in the factor graph
|
||||
X1 = gtsam.symbol(ord('x'), 1)
|
||||
X2 = gtsam.symbol(ord('x'), 2)
|
||||
X3 = gtsam.symbol(ord('x'), 3)
|
||||
L1 = gtsam.symbol(ord('l'), 4)
|
||||
L2 = gtsam.symbol(ord('l'), 5)
|
||||
|
||||
# Add a prior on pose X1 at the origin. A prior factor consists of a mean and a noise model
|
||||
graph.add(gtsam.PriorFactorPose2(X1, gtsam.Pose2(0.0, 0.0, 0.0), PRIOR_NOISE))
|
||||
|
||||
# Add odometry factors between X1,X2 and X2,X3, respectively
|
||||
graph.add(gtsam.BetweenFactorPose2(
|
||||
X1, X2, gtsam.Pose2(2.0, 0.0, 0.0), ODOMETRY_NOISE))
|
||||
graph.add(gtsam.BetweenFactorPose2(
|
||||
X2, X3, gtsam.Pose2(2.0, 0.0, 0.0), ODOMETRY_NOISE))
|
||||
|
||||
# Add Range-Bearing measurements to two different landmarks L1 and L2
|
||||
graph.add(gtsam.BearingRangeFactor2D(
|
||||
X1, L1, gtsam.Rot2.fromDegrees(45), np.sqrt(4.0+4.0), MEASUREMENT_NOISE))
|
||||
graph.add(gtsam.BearingRangeFactor2D(
|
||||
X2, L1, gtsam.Rot2.fromDegrees(90), 2.0, MEASUREMENT_NOISE))
|
||||
graph.add(gtsam.BearingRangeFactor2D(
|
||||
X3, L2, gtsam.Rot2.fromDegrees(90), 2.0, MEASUREMENT_NOISE))
|
||||
|
||||
# Print graph
|
||||
print("Factor Graph:\n{}".format(graph))
|
||||
|
||||
# Create (deliberately inaccurate) initial estimate
|
||||
initial_estimate = gtsam.Values()
|
||||
initial_estimate.insert(X1, gtsam.Pose2(-0.25, 0.20, 0.15))
|
||||
initial_estimate.insert(X2, gtsam.Pose2(2.30, 0.10, -0.20))
|
||||
initial_estimate.insert(X3, gtsam.Pose2(4.10, 0.10, 0.10))
|
||||
initial_estimate.insert(L1, gtsam.Point2(1.80, 2.10))
|
||||
initial_estimate.insert(L2, gtsam.Point2(4.10, 1.80))
|
||||
|
||||
# Print
|
||||
print("Initial Estimate:\n{}".format(initial_estimate))
|
||||
|
||||
# Optimize using Levenberg-Marquardt optimization. The optimizer
|
||||
# accepts an optional set of configuration parameters, controlling
|
||||
# things like convergence criteria, the type of linear system solver
|
||||
# to use, and the amount of information displayed during optimization.
|
||||
# Here we will use the default set of parameters. See the
|
||||
# documentation for the full set of parameters.
|
||||
params = gtsam.LevenbergMarquardtParams()
|
||||
optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initial_estimate, params)
|
||||
result = optimizer.optimize()
|
||||
print("\nFinal Result:\n{}".format(result))
|
||||
|
||||
# Calculate and print marginal covariances for all variables
|
||||
marginals = gtsam.Marginals(graph, result)
|
||||
for (key, str) in [(X1, "X1"), (X2, "X2"), (X3, "X3"), (L1, "L1"), (L2, "L2")]:
|
||||
print("{} covariance:\n{}\n".format(str, marginals.marginalCovariance(key)))
|
|
@ -0,0 +1,87 @@
|
|||
"""
|
||||
GTSAM Copyright 2010-2018, Georgia Tech Research Corporation,
|
||||
Atlanta, Georgia 30332-0415
|
||||
All Rights Reserved
|
||||
Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
See LICENSE for the license information
|
||||
|
||||
Simple robotics example using odometry measurements and bearing-range (laser) measurements
|
||||
Author: Alex Cunningham (C++), Kevin Deng & Frank Dellaert (Python)
|
||||
"""
|
||||
# pylint: disable=invalid-name, E1101
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import math
|
||||
|
||||
import numpy as np
|
||||
|
||||
import gtsam
|
||||
|
||||
|
||||
def vector3(x, y, z):
|
||||
"""Create 3d double numpy array."""
|
||||
return np.array([x, y, z], dtype=np.float)
|
||||
|
||||
|
||||
# Create noise models
|
||||
PRIOR_NOISE = gtsam.noiseModel_Diagonal.Sigmas(vector3(0.3, 0.3, 0.1))
|
||||
ODOMETRY_NOISE = gtsam.noiseModel_Diagonal.Sigmas(vector3(0.2, 0.2, 0.1))
|
||||
|
||||
# 1. Create a factor graph container and add factors to it
|
||||
graph = gtsam.NonlinearFactorGraph()
|
||||
|
||||
# 2a. Add a prior on the first pose, setting it to the origin
|
||||
# A prior factor consists of a mean and a noise ODOMETRY_NOISE (covariance matrix)
|
||||
graph.add(gtsam.PriorFactorPose2(1, gtsam.Pose2(0, 0, 0), PRIOR_NOISE))
|
||||
|
||||
# 2b. Add odometry factors
|
||||
# Create odometry (Between) factors between consecutive poses
|
||||
graph.add(gtsam.BetweenFactorPose2(1, 2, gtsam.Pose2(2, 0, 0), ODOMETRY_NOISE))
|
||||
graph.add(gtsam.BetweenFactorPose2(
|
||||
2, 3, gtsam.Pose2(2, 0, math.pi / 2), ODOMETRY_NOISE))
|
||||
graph.add(gtsam.BetweenFactorPose2(
|
||||
3, 4, gtsam.Pose2(2, 0, math.pi / 2), ODOMETRY_NOISE))
|
||||
graph.add(gtsam.BetweenFactorPose2(
|
||||
4, 5, gtsam.Pose2(2, 0, math.pi / 2), ODOMETRY_NOISE))
|
||||
|
||||
# 2c. Add the loop closure constraint
|
||||
# This factor encodes the fact that we have returned to the same pose. In real
|
||||
# systems, these constraints may be identified in many ways, such as appearance-based
|
||||
# techniques with camera images. We will use another Between Factor to enforce this constraint:
|
||||
graph.add(gtsam.BetweenFactorPose2(
|
||||
5, 2, gtsam.Pose2(2, 0, math.pi / 2), ODOMETRY_NOISE))
|
||||
print("\nFactor Graph:\n{}".format(graph)) # print
|
||||
|
||||
# 3. Create the data structure to hold the initial_estimate estimate to the
|
||||
# solution. For illustrative purposes, these have been deliberately set to incorrect values
|
||||
initial_estimate = gtsam.Values()
|
||||
initial_estimate.insert(1, gtsam.Pose2(0.5, 0.0, 0.2))
|
||||
initial_estimate.insert(2, gtsam.Pose2(2.3, 0.1, -0.2))
|
||||
initial_estimate.insert(3, gtsam.Pose2(4.1, 0.1, math.pi / 2))
|
||||
initial_estimate.insert(4, gtsam.Pose2(4.0, 2.0, math.pi))
|
||||
initial_estimate.insert(5, gtsam.Pose2(2.1, 2.1, -math.pi / 2))
|
||||
print("\nInitial Estimate:\n{}".format(initial_estimate)) # print
|
||||
|
||||
# 4. Optimize the initial values using a Gauss-Newton nonlinear optimizer
|
||||
# The optimizer accepts an optional set of configuration parameters,
|
||||
# controlling things like convergence criteria, the type of linear
|
||||
# system solver to use, and the amount of information displayed during
|
||||
# optimization. We will set a few parameters as a demonstration.
|
||||
parameters = gtsam.GaussNewtonParams()
|
||||
|
||||
# Stop iterating once the change in error between steps is less than this value
|
||||
parameters.setRelativeErrorTol(1e-5)
|
||||
# Do not perform more than N iteration steps
|
||||
parameters.setMaxIterations(100)
|
||||
# Create the optimizer ...
|
||||
optimizer = gtsam.GaussNewtonOptimizer(graph, initial_estimate, parameters)
|
||||
# ... and optimize
|
||||
result = optimizer.optimize()
|
||||
print("Final Result:\n{}".format(result))
|
||||
|
||||
# 5. Calculate and print marginal covariances for all variables
|
||||
marginals = gtsam.Marginals(graph, result)
|
||||
for i in range(1, 6):
|
||||
print("X{} covariance:\n{}\n".format(i, marginals.marginalCovariance(i)))
|
|
@ -0,0 +1,4 @@
|
|||
These examples are almost identical to the old handwritten python wrapper
|
||||
examples. However, there are just some slight name changes, for example
|
||||
noiseModel.Diagonal becomes noiseModel_Diagonal etc...
|
||||
Also, annoyingly, instead of gtsam.Symbol('b',0) we now need to say gtsam.symbol(ord('b'), 0))
|
|
@ -0,0 +1,38 @@
|
|||
"""
|
||||
A structure-from-motion example with landmarks
|
||||
- The landmarks form a 10 meter cube
|
||||
- The robot rotates around the landmarks, always facing towards the cube
|
||||
"""
|
||||
# pylint: disable=invalid-name, E1101
|
||||
|
||||
import numpy as np
|
||||
|
||||
import gtsam
|
||||
|
||||
|
||||
def createPoints():
|
||||
# Create the set of ground-truth landmarks
|
||||
points = [gtsam.Point3(10.0, 10.0, 10.0),
|
||||
gtsam.Point3(-10.0, 10.0, 10.0),
|
||||
gtsam.Point3(-10.0, -10.0, 10.0),
|
||||
gtsam.Point3(10.0, -10.0, 10.0),
|
||||
gtsam.Point3(10.0, 10.0, -10.0),
|
||||
gtsam.Point3(-10.0, 10.0, -10.0),
|
||||
gtsam.Point3(-10.0, -10.0, -10.0),
|
||||
gtsam.Point3(10.0, -10.0, -10.0)]
|
||||
return points
|
||||
|
||||
|
||||
def createPoses(K):
|
||||
# Create the set of ground-truth poses
|
||||
radius = 30.0
|
||||
angles = np.linspace(0, 2*np.pi, 8, endpoint=False)
|
||||
up = gtsam.Point3(0, 0, 1)
|
||||
target = gtsam.Point3(0, 0, 0)
|
||||
poses = []
|
||||
for theta in angles:
|
||||
position = gtsam.Point3(radius*np.cos(theta),
|
||||
radius*np.sin(theta), 0.0)
|
||||
camera = gtsam.PinholeCameraCal3_S2.Lookat(position, target, up, K)
|
||||
poses.append(camera.pose())
|
||||
return poses
|
|
@ -0,0 +1,163 @@
|
|||
"""
|
||||
GTSAM Copyright 2010-2018, Georgia Tech Research Corporation,
|
||||
Atlanta, Georgia 30332-0415
|
||||
All Rights Reserved
|
||||
Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
See LICENSE for the license information
|
||||
|
||||
An example of running visual SLAM using iSAM2.
|
||||
Author: Duy-Nguyen Ta (C++), Frank Dellaert (Python)
|
||||
"""
|
||||
# pylint: disable=invalid-name, E1101
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from mpl_toolkits.mplot3d import Axes3D # pylint: disable=W0611
|
||||
|
||||
import gtsam
|
||||
import gtsam.utils.plot as gtsam_plot
|
||||
from gtsam.examples import SFMdata
|
||||
|
||||
|
||||
def X(i):
|
||||
"""Create key for pose i."""
|
||||
return int(gtsam.symbol(ord('x'), i))
|
||||
|
||||
|
||||
def L(j):
|
||||
"""Create key for landmark j."""
|
||||
return int(gtsam.symbol(ord('l'), j))
|
||||
|
||||
|
||||
def visual_ISAM2_plot(result):
|
||||
"""
|
||||
VisualISAMPlot plots current state of ISAM2 object
|
||||
Author: Ellon Paiva
|
||||
Based on MATLAB version by: Duy Nguyen Ta and Frank Dellaert
|
||||
"""
|
||||
|
||||
# Declare an id for the figure
|
||||
fignum = 0
|
||||
|
||||
fig = plt.figure(fignum)
|
||||
axes = fig.gca(projection='3d')
|
||||
plt.cla()
|
||||
|
||||
# Plot points
|
||||
# Can't use data because current frame might not see all points
|
||||
# marginals = Marginals(isam.getFactorsUnsafe(), isam.calculateEstimate())
|
||||
# gtsam.plot_3d_points(result, [], marginals)
|
||||
gtsam_plot.plot_3d_points(fignum, result, 'rx')
|
||||
|
||||
# Plot cameras
|
||||
i = 0
|
||||
while result.exists(X(i)):
|
||||
pose_i = result.atPose3(X(i))
|
||||
gtsam_plot.plot_pose3(fignum, pose_i, 10)
|
||||
i += 1
|
||||
|
||||
# draw
|
||||
axes.set_xlim3d(-40, 40)
|
||||
axes.set_ylim3d(-40, 40)
|
||||
axes.set_zlim3d(-40, 40)
|
||||
plt.pause(1)
|
||||
|
||||
|
||||
def visual_ISAM2_example():
|
||||
plt.ion()
|
||||
|
||||
# Define the camera calibration parameters
|
||||
K = gtsam.Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0)
|
||||
|
||||
# Define the camera observation noise model
|
||||
measurement_noise = gtsam.noiseModel_Isotropic.Sigma(
|
||||
2, 1.0) # one pixel in u and v
|
||||
|
||||
# Create the set of ground-truth landmarks
|
||||
points = SFMdata.createPoints()
|
||||
|
||||
# Create the set of ground-truth poses
|
||||
poses = SFMdata.createPoses(K)
|
||||
|
||||
# Create an iSAM2 object. Unlike iSAM1, which performs periodic batch steps
|
||||
# to maintain proper linearization and efficient variable ordering, iSAM2
|
||||
# performs partial relinearization/reordering at each step. A parameter
|
||||
# structure is available that allows the user to set various properties, such
|
||||
# as the relinearization threshold and type of linear solver. For this
|
||||
# example, we we set the relinearization threshold small so the iSAM2 result
|
||||
# will approach the batch result.
|
||||
parameters = gtsam.ISAM2Params()
|
||||
parameters.setRelinearizeThreshold(0.01)
|
||||
parameters.setRelinearizeSkip(1)
|
||||
isam = gtsam.ISAM2(parameters)
|
||||
|
||||
# Create a Factor Graph and Values to hold the new data
|
||||
graph = gtsam.NonlinearFactorGraph()
|
||||
initial_estimate = gtsam.Values()
|
||||
|
||||
# Loop over the different poses, adding the observations to iSAM incrementally
|
||||
for i, pose in enumerate(poses):
|
||||
|
||||
# Add factors for each landmark observation
|
||||
for j, point in enumerate(points):
|
||||
camera = gtsam.PinholeCameraCal3_S2(pose, K)
|
||||
measurement = camera.project(point)
|
||||
graph.push_back(gtsam.GenericProjectionFactorCal3_S2(
|
||||
measurement, measurement_noise, X(i), L(j), K))
|
||||
|
||||
# Add an initial guess for the current pose
|
||||
# Intentionally initialize the variables off from the ground truth
|
||||
initial_estimate.insert(X(i), pose.compose(gtsam.Pose3(
|
||||
gtsam.Rot3.Rodrigues(-0.1, 0.2, 0.25), gtsam.Point3(0.05, -0.10, 0.20))))
|
||||
|
||||
# If this is the first iteration, add a prior on the first pose to set the
|
||||
# coordinate frame and a prior on the first landmark to set the scale.
|
||||
# Also, as iSAM solves incrementally, we must wait until each is observed
|
||||
# at least twice before adding it to iSAM.
|
||||
if i == 0:
|
||||
# Add a prior on pose x0
|
||||
pose_noise = gtsam.noiseModel_Diagonal.Sigmas(np.array(
|
||||
[0.3, 0.3, 0.3, 0.1, 0.1, 0.1])) # 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
|
||||
graph.push_back(gtsam.PriorFactorPose3(X(0), poses[0], pose_noise))
|
||||
|
||||
# Add a prior on landmark l0
|
||||
point_noise = gtsam.noiseModel_Isotropic.Sigma(3, 0.1)
|
||||
graph.push_back(gtsam.PriorFactorPoint3(
|
||||
L(0), points[0], point_noise)) # add directly to graph
|
||||
|
||||
# Add initial guesses to all observed landmarks
|
||||
# Intentionally initialize the variables off from the ground truth
|
||||
for j, point in enumerate(points):
|
||||
initial_estimate.insert(L(j), gtsam.Point3(
|
||||
point.x()-0.25, point.y()+0.20, point.z()+0.15))
|
||||
else:
|
||||
# Update iSAM with the new factors
|
||||
isam.update(graph, initial_estimate)
|
||||
# Each call to iSAM2 update(*) performs one iteration of the iterative nonlinear solver.
|
||||
# If accuracy is desired at the expense of time, update(*) can be called additional
|
||||
# times to perform multiple optimizer iterations every step.
|
||||
isam.update()
|
||||
current_estimate = isam.calculateEstimate()
|
||||
print("****************************************************")
|
||||
print("Frame", i, ":")
|
||||
for j in range(i + 1):
|
||||
print(X(j), ":", current_estimate.atPose3(X(j)))
|
||||
|
||||
for j in range(len(points)):
|
||||
print(L(j), ":", current_estimate.atPoint3(L(j)))
|
||||
|
||||
visual_ISAM2_plot(current_estimate)
|
||||
|
||||
# Clear the factor graph and values for the next iteration
|
||||
graph.resize(0)
|
||||
initial_estimate.clear()
|
||||
|
||||
plt.ioff()
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
visual_ISAM2_example()
|
|
@ -0,0 +1,112 @@
|
|||
"""
|
||||
This file is not a real python unittest. It contains small experiments
|
||||
to test the wrapper with gtsam_test, a short version of gtsam.h.
|
||||
Its name convention is different from other tests so it won't be discovered.
|
||||
"""
|
||||
import gtsam
|
||||
import numpy as np
|
||||
|
||||
r = gtsam.Rot3()
|
||||
print(r)
|
||||
print(r.pitch())
|
||||
r2 = gtsam.Rot3()
|
||||
r3 = r.compose(r2)
|
||||
print("r3 pitch:", r3.pitch())
|
||||
|
||||
v = np.array([1, 1, 1])
|
||||
print("v = ", v)
|
||||
r4 = r3.retract(v)
|
||||
print("r4 pitch:", r4.pitch())
|
||||
r4.print_(b'r4: ')
|
||||
r3.print_(b"r3: ")
|
||||
|
||||
v = r3.localCoordinates(r4)
|
||||
print("localCoordinates:", v)
|
||||
|
||||
Rmat = np.array([
|
||||
[0.990074, -0.0942928, 0.104218],
|
||||
[0.104218, 0.990074, -0.0942928],
|
||||
[-0.0942928, 0.104218, 0.990074]
|
||||
])
|
||||
r5 = gtsam.Rot3(Rmat)
|
||||
r5.print_(b"r5: ")
|
||||
|
||||
l = gtsam.Rot3.Logmap(r5)
|
||||
print("l = ", l)
|
||||
|
||||
|
||||
noise = gtsam.noiseModel_Gaussian.Covariance(Rmat)
|
||||
noise.print_(b"noise:")
|
||||
|
||||
D = np.array([1.,2.,3.])
|
||||
diag = gtsam.noiseModel_Diagonal.Variances(D)
|
||||
print("diag:", diag)
|
||||
diag.print_(b"diag:")
|
||||
print("diag R:", diag.R())
|
||||
|
||||
p = gtsam.Point3()
|
||||
p.print_("p:")
|
||||
factor = gtsam.BetweenFactorPoint3(1,2,p, noise)
|
||||
factor.print_(b"factor:")
|
||||
|
||||
vv = gtsam.VectorValues()
|
||||
vv.print_(b"vv:")
|
||||
vv.insert(1, np.array([1.,2.,3.]))
|
||||
vv.insert(2, np.array([3.,4.]))
|
||||
vv.insert(3, np.array([5.,6.,7.,8.]))
|
||||
vv.print_(b"vv:")
|
||||
|
||||
vv2 = gtsam.VectorValues(vv)
|
||||
vv2.insert(4, np.array([4.,2.,1]))
|
||||
vv2.print_(b"vv2:")
|
||||
vv.print_(b"vv:")
|
||||
|
||||
vv.insert(4, np.array([1.,2.,4.]))
|
||||
vv.print_(b"vv:")
|
||||
vv3 = vv.add(vv2)
|
||||
|
||||
vv3.print_(b"vv3:")
|
||||
|
||||
values = gtsam.Values()
|
||||
values.insert(1, gtsam.Point3())
|
||||
values.insert(2, gtsam.Rot3())
|
||||
values.print_(b"values:")
|
||||
|
||||
factor = gtsam.PriorFactorVector(1, np.array([1.,2.,3.]), diag)
|
||||
print "Prior factor vector: ", factor
|
||||
|
||||
|
||||
|
||||
keys = gtsam.KeyVector()
|
||||
|
||||
keys.push_back(1)
|
||||
keys.push_back(2)
|
||||
print 'size: ', keys.size()
|
||||
print keys.at(0)
|
||||
print keys.at(1)
|
||||
|
||||
noise = gtsam.noiseModel_Isotropic.Precision(2, 3.0)
|
||||
noise.print_('noise:')
|
||||
print 'noise print:', noise
|
||||
f = gtsam.JacobianFactor(7, np.ones([2,2]), model=noise, b=np.ones(2))
|
||||
print 'JacobianFactor(7):\n', f
|
||||
print "A = ", f.getA()
|
||||
print "b = ", f.getb()
|
||||
|
||||
f = gtsam.JacobianFactor(np.ones(2))
|
||||
f.print_('jacoboian b_in:')
|
||||
|
||||
|
||||
print "JacobianFactor initalized with b_in:", f
|
||||
|
||||
diag = gtsam.noiseModel_Diagonal.Sigmas(np.array([1.,2.,3.]))
|
||||
fv = gtsam.PriorFactorVector(1, np.array([4.,5.,6.]), diag)
|
||||
print "priorfactorvector: ", fv
|
||||
|
||||
print "base noise: ", fv.get_noiseModel()
|
||||
print "casted to gaussian2: ", gtsam.dynamic_cast_noiseModel_Diagonal_noiseModel_Base(fv.get_noiseModel())
|
||||
|
||||
X = gtsam.symbol(65, 19)
|
||||
print X
|
||||
print gtsam.symbolChr(X)
|
||||
print gtsam.symbolIndex(X)
|
|
@ -0,0 +1,772 @@
|
|||
namespace gtsam {
|
||||
|
||||
#include <gtsam/inference/Key.h>
|
||||
typedef size_t Key;
|
||||
|
||||
#include <gtsam/base/FastVector.h>
|
||||
template<T> class FastVector {
|
||||
FastVector();
|
||||
FastVector(const This& f);
|
||||
void push_back(const T& e);
|
||||
//T& operator[](int);
|
||||
T at(int i);
|
||||
size_t size() const;
|
||||
};
|
||||
|
||||
typedef gtsam::FastVector<gtsam::Key> KeyVector;
|
||||
|
||||
//*************************************************************************
|
||||
// geometry
|
||||
//*************************************************************************
|
||||
|
||||
#include <gtsam/geometry/Point2.h>
|
||||
class Point2 {
|
||||
// Standard Constructors
|
||||
Point2();
|
||||
Point2(double x, double y);
|
||||
Point2(Vector v);
|
||||
//Point2(const gtsam::Point2& l);
|
||||
|
||||
// Testable
|
||||
void print(string s) const;
|
||||
bool equals(const gtsam::Point2& pose, double tol) const;
|
||||
|
||||
// Group
|
||||
static gtsam::Point2 identity();
|
||||
|
||||
// Standard Interface
|
||||
double x() const;
|
||||
double y() const;
|
||||
Vector vector() const;
|
||||
double distance(const gtsam::Point2& p2) const;
|
||||
double norm() const;
|
||||
|
||||
// enabling serialization functionality
|
||||
void serialize() const;
|
||||
};
|
||||
|
||||
#include <gtsam/geometry/Point3.h>
|
||||
class Point3 {
|
||||
// Standard Constructors
|
||||
Point3();
|
||||
Point3(double x, double y, double z);
|
||||
Point3(Vector v);
|
||||
//Point3(const gtsam::Point3& l);
|
||||
|
||||
// Testable
|
||||
void print(string s) const;
|
||||
bool equals(const gtsam::Point3& p, double tol) const;
|
||||
|
||||
// Group
|
||||
static gtsam::Point3 identity();
|
||||
|
||||
// Standard Interface
|
||||
Vector vector() const;
|
||||
double x() const;
|
||||
double y() const;
|
||||
double z() const;
|
||||
|
||||
// enabling serialization functionality
|
||||
void serialize() const;
|
||||
};
|
||||
|
||||
#include <gtsam/geometry/Rot2.h>
|
||||
class Rot2 {
|
||||
// Standard Constructors and Named Constructors
|
||||
Rot2();
|
||||
Rot2(double theta);
|
||||
//Rot2(const gtsam::Rot2& l);
|
||||
|
||||
static gtsam::Rot2 fromAngle(double theta);
|
||||
static gtsam::Rot2 fromDegrees(double theta);
|
||||
static gtsam::Rot2 fromCosSin(double c, double s);
|
||||
|
||||
// Testable
|
||||
void print(string s) const;
|
||||
bool equals(const gtsam::Rot2& rot, double tol) const;
|
||||
|
||||
// Group
|
||||
static gtsam::Rot2 identity();
|
||||
gtsam::Rot2 inverse();
|
||||
gtsam::Rot2 compose(const gtsam::Rot2& p2) const;
|
||||
gtsam::Rot2 between(const gtsam::Rot2& p2) const;
|
||||
|
||||
// Manifold
|
||||
gtsam::Rot2 retract(Vector v) const;
|
||||
Vector localCoordinates(const gtsam::Rot2& p) const;
|
||||
|
||||
// Lie Group
|
||||
static gtsam::Rot2 Expmap(Vector v);
|
||||
static Vector Logmap(const gtsam::Rot2& p);
|
||||
|
||||
// Group Action on Point2
|
||||
gtsam::Point2 rotate(const gtsam::Point2& point) const;
|
||||
gtsam::Point2 unrotate(const gtsam::Point2& point) const;
|
||||
|
||||
// Standard Interface
|
||||
static gtsam::Rot2 relativeBearing(const gtsam::Point2& d); // Ignoring derivative
|
||||
static gtsam::Rot2 atan2(double y, double x);
|
||||
double theta() const;
|
||||
double degrees() const;
|
||||
double c() const;
|
||||
double s() const;
|
||||
Matrix matrix() const;
|
||||
|
||||
// enabling serialization functionality
|
||||
void serialize() const;
|
||||
};
|
||||
|
||||
#include <gtsam/geometry/Rot3.h>
|
||||
class Rot3 {
|
||||
// Standard Constructors and Named Constructors
|
||||
Rot3();
|
||||
Rot3(Matrix R);
|
||||
//Rot3(const gtsam::Rot3& l);
|
||||
|
||||
static gtsam::Rot3 Rx(double t);
|
||||
static gtsam::Rot3 Ry(double t);
|
||||
static gtsam::Rot3 Rz(double t);
|
||||
static gtsam::Rot3 RzRyRx(double x, double y, double z);
|
||||
static gtsam::Rot3 RzRyRx(Vector xyz);
|
||||
static gtsam::Rot3 Yaw(double t); // positive yaw is to right (as in aircraft heading)
|
||||
static gtsam::Rot3 Pitch(double t); // positive pitch is up (increasing aircraft altitude)
|
||||
static gtsam::Rot3 Roll(double t); // positive roll is to right (increasing yaw in aircraft)
|
||||
static gtsam::Rot3 Ypr(double y, double p, double r);
|
||||
static gtsam::Rot3 Quaternion(double w, double x, double y, double z);
|
||||
static gtsam::Rot3 Rodrigues(Vector v);
|
||||
|
||||
// Testable
|
||||
void print(string s) const;
|
||||
bool equals(const gtsam::Rot3& rot, double tol) const;
|
||||
|
||||
// Group
|
||||
static gtsam::Rot3 identity();
|
||||
gtsam::Rot3 inverse() const;
|
||||
gtsam::Rot3 compose(const gtsam::Rot3& p2) const;
|
||||
gtsam::Rot3 between(const gtsam::Rot3& p2) const;
|
||||
|
||||
// Manifold
|
||||
//gtsam::Rot3 retractCayley(Vector v) const; // FIXME, does not exist in both Matrix and Quaternion options
|
||||
gtsam::Rot3 retract(Vector v) const;
|
||||
Vector localCoordinates(const gtsam::Rot3& p) const;
|
||||
|
||||
// Group Action on Point3
|
||||
gtsam::Point3 rotate(const gtsam::Point3& p) const;
|
||||
gtsam::Point3 unrotate(const gtsam::Point3& p) const;
|
||||
|
||||
// Standard Interface
|
||||
static gtsam::Rot3 Expmap(Vector v);
|
||||
static Vector Logmap(const gtsam::Rot3& p);
|
||||
Matrix matrix() const;
|
||||
Matrix transpose() const;
|
||||
gtsam::Point3 column(size_t index) const;
|
||||
Vector xyz() const;
|
||||
Vector ypr() const;
|
||||
Vector rpy() const;
|
||||
double roll() const;
|
||||
double pitch() const;
|
||||
double yaw() const;
|
||||
// Vector toQuaternion() const; // FIXME: Can't cast to Vector properly
|
||||
Vector quaternion() const;
|
||||
|
||||
// enabling serialization functionality
|
||||
void serialize() const;
|
||||
};
|
||||
|
||||
#include <gtsam/geometry/Pose2.h>
|
||||
class Pose2 {
|
||||
// Standard Constructor
|
||||
Pose2();
|
||||
//Pose2(const gtsam::Pose2& pose);
|
||||
Pose2(double x, double y, double theta);
|
||||
Pose2(double theta, const gtsam::Point2& t);
|
||||
Pose2(const gtsam::Rot2& r, const gtsam::Point2& t);
|
||||
Pose2(Vector v);
|
||||
|
||||
// Testable
|
||||
void print(string s) const;
|
||||
bool equals(const gtsam::Pose2& pose, double tol) const;
|
||||
|
||||
// Group
|
||||
static gtsam::Pose2 identity();
|
||||
gtsam::Pose2 inverse() const;
|
||||
gtsam::Pose2 compose(const gtsam::Pose2& p2) const;
|
||||
gtsam::Pose2 between(const gtsam::Pose2& p2) const;
|
||||
|
||||
// Manifold
|
||||
gtsam::Pose2 retract(Vector v) const;
|
||||
Vector localCoordinates(const gtsam::Pose2& p) const;
|
||||
|
||||
// Lie Group
|
||||
static gtsam::Pose2 Expmap(Vector v);
|
||||
static Vector Logmap(const gtsam::Pose2& p);
|
||||
Matrix AdjointMap() const;
|
||||
Vector Adjoint(const Vector& xi) const;
|
||||
static Matrix wedge(double vx, double vy, double w);
|
||||
|
||||
// Group Actions on Point2
|
||||
gtsam::Point2 transform_from(const gtsam::Point2& p) const;
|
||||
gtsam::Point2 transform_to(const gtsam::Point2& p) const;
|
||||
|
||||
// Standard Interface
|
||||
double x() const;
|
||||
double y() const;
|
||||
double theta() const;
|
||||
gtsam::Rot2 bearing(const gtsam::Point2& point) const;
|
||||
double range(const gtsam::Point2& point) const;
|
||||
gtsam::Point2 translation() const;
|
||||
gtsam::Rot2 rotation() const;
|
||||
Matrix matrix() const;
|
||||
|
||||
// enabling serialization functionality
|
||||
void serialize() const;
|
||||
};
|
||||
|
||||
|
||||
#include <gtsam/geometry/Pose3.h>
|
||||
class Pose3 {
|
||||
// Standard Constructors
|
||||
Pose3();
|
||||
//Pose3(const gtsam::Pose3& pose);
|
||||
Pose3(const gtsam::Rot3& r, const gtsam::Point3& t);
|
||||
Pose3(const gtsam::Pose2& pose2); // FIXME: shadows Pose3(Pose3 pose)
|
||||
Pose3(Matrix t);
|
||||
|
||||
// Testable
|
||||
void print(string s) const;
|
||||
bool equals(const gtsam::Pose3& pose, double tol) const;
|
||||
|
||||
// Group
|
||||
static gtsam::Pose3 identity();
|
||||
gtsam::Pose3 inverse() const;
|
||||
gtsam::Pose3 compose(const gtsam::Pose3& p2) const;
|
||||
gtsam::Pose3 between(const gtsam::Pose3& p2) const;
|
||||
|
||||
// Manifold
|
||||
gtsam::Pose3 retract(Vector v) const;
|
||||
Vector localCoordinates(const gtsam::Pose3& T2) const;
|
||||
|
||||
// Lie Group
|
||||
static gtsam::Pose3 Expmap(Vector v);
|
||||
static Vector Logmap(const gtsam::Pose3& p);
|
||||
Matrix AdjointMap() const;
|
||||
Vector Adjoint(Vector xi) const;
|
||||
static Matrix wedge(double wx, double wy, double wz, double vx, double vy, double vz);
|
||||
|
||||
// Group Action on Point3
|
||||
gtsam::Point3 transform_from(const gtsam::Point3& p) const;
|
||||
gtsam::Point3 transform_to(const gtsam::Point3& p) const;
|
||||
|
||||
// Standard Interface
|
||||
gtsam::Rot3 rotation() const;
|
||||
gtsam::Point3 translation() const;
|
||||
double x() const;
|
||||
double y() const;
|
||||
double z() const;
|
||||
Matrix matrix() const;
|
||||
gtsam::Pose3 transform_to(const gtsam::Pose3& pose) const; // FIXME: shadows other transform_to()
|
||||
double range(const gtsam::Point3& point);
|
||||
double range(const gtsam::Pose3& pose);
|
||||
|
||||
// enabling serialization functionality
|
||||
void serialize() const;
|
||||
};
|
||||
|
||||
//*************************************************************************
|
||||
// noise
|
||||
//*************************************************************************
|
||||
|
||||
namespace noiseModel {
|
||||
#include <gtsam/linear/NoiseModel.h>
|
||||
virtual class Base {
|
||||
};
|
||||
|
||||
virtual class Gaussian : gtsam::noiseModel::Base {
|
||||
static gtsam::noiseModel::Gaussian* SqrtInformation(Matrix R);
|
||||
static gtsam::noiseModel::Gaussian* Covariance(Matrix R);
|
||||
Matrix R() const;
|
||||
bool equals(gtsam::noiseModel::Base& expected, double tol);
|
||||
void print(string s) const;
|
||||
|
||||
// enabling serialization functionality
|
||||
void serializable() const;
|
||||
};
|
||||
|
||||
virtual class Diagonal : gtsam::noiseModel::Gaussian {
|
||||
static gtsam::noiseModel::Diagonal* Sigmas(Vector sigmas);
|
||||
static gtsam::noiseModel::Diagonal* Variances(Vector variances);
|
||||
static gtsam::noiseModel::Diagonal* Precisions(Vector precisions);
|
||||
Matrix R() const;
|
||||
void print(string s) const;
|
||||
|
||||
// enabling serialization functionality
|
||||
void serializable() const;
|
||||
};
|
||||
|
||||
virtual class Constrained : gtsam::noiseModel::Diagonal {
|
||||
static gtsam::noiseModel::Constrained* MixedSigmas(const Vector& mu, const Vector& sigmas);
|
||||
static gtsam::noiseModel::Constrained* MixedSigmas(double m, const Vector& sigmas);
|
||||
static gtsam::noiseModel::Constrained* MixedVariances(const Vector& mu, const Vector& variances);
|
||||
static gtsam::noiseModel::Constrained* MixedVariances(const Vector& variances);
|
||||
static gtsam::noiseModel::Constrained* MixedPrecisions(const Vector& mu, const Vector& precisions);
|
||||
static gtsam::noiseModel::Constrained* MixedPrecisions(const Vector& precisions);
|
||||
|
||||
static gtsam::noiseModel::Constrained* All(size_t dim);
|
||||
static gtsam::noiseModel::Constrained* All(size_t dim, double mu);
|
||||
|
||||
gtsam::noiseModel::Constrained* unit() const;
|
||||
|
||||
// enabling serialization functionality
|
||||
void serializable() const;
|
||||
};
|
||||
|
||||
virtual class Isotropic : gtsam::noiseModel::Diagonal {
|
||||
static gtsam::noiseModel::Isotropic* Sigma(size_t dim, double sigma);
|
||||
static gtsam::noiseModel::Isotropic* Variance(size_t dim, double varianace);
|
||||
static gtsam::noiseModel::Isotropic* Precision(size_t dim, double precision);
|
||||
void print(string s) const;
|
||||
|
||||
// enabling serialization functionality
|
||||
void serializable() const;
|
||||
};
|
||||
|
||||
virtual class Unit : gtsam::noiseModel::Isotropic {
|
||||
static gtsam::noiseModel::Unit* Create(size_t dim);
|
||||
void print(string s) const;
|
||||
|
||||
// enabling serialization functionality
|
||||
void serializable() const;
|
||||
};
|
||||
|
||||
namespace mEstimator {
|
||||
virtual class Base {
|
||||
};
|
||||
|
||||
virtual class Null: gtsam::noiseModel::mEstimator::Base {
|
||||
Null();
|
||||
//Null(const gtsam::noiseModel::mEstimator::Null& other);
|
||||
void print(string s) const;
|
||||
static gtsam::noiseModel::mEstimator::Null* Create();
|
||||
|
||||
// enabling serialization functionality
|
||||
void serializable() const;
|
||||
};
|
||||
|
||||
virtual class Fair: gtsam::noiseModel::mEstimator::Base {
|
||||
Fair(double c);
|
||||
//Fair(const gtsam::noiseModel::mEstimator::Fair& other);
|
||||
void print(string s) const;
|
||||
static gtsam::noiseModel::mEstimator::Fair* Create(double c);
|
||||
|
||||
// enabling serialization functionality
|
||||
void serializable() const;
|
||||
};
|
||||
|
||||
virtual class Huber: gtsam::noiseModel::mEstimator::Base {
|
||||
Huber(double k);
|
||||
//Huber(const gtsam::noiseModel::mEstimator::Huber& other);
|
||||
|
||||
void print(string s) const;
|
||||
static gtsam::noiseModel::mEstimator::Huber* Create(double k);
|
||||
|
||||
// enabling serialization functionality
|
||||
void serializable() const;
|
||||
};
|
||||
|
||||
virtual class Tukey: gtsam::noiseModel::mEstimator::Base {
|
||||
Tukey(double k);
|
||||
//Tukey(const gtsam::noiseModel::mEstimator::Tukey& other);
|
||||
|
||||
void print(string s) const;
|
||||
static gtsam::noiseModel::mEstimator::Tukey* Create(double k);
|
||||
|
||||
// enabling serialization functionality
|
||||
void serializable() const;
|
||||
};
|
||||
|
||||
}///\namespace mEstimator
|
||||
|
||||
virtual class Robust : gtsam::noiseModel::Base {
|
||||
Robust(const gtsam::noiseModel::mEstimator::Base* robust, const gtsam::noiseModel::Base* noise);
|
||||
//Robust(const gtsam::noiseModel::Robust& other);
|
||||
|
||||
static gtsam::noiseModel::Robust* Create(const gtsam::noiseModel::mEstimator::Base* robust, const gtsam::noiseModel::Base* noise);
|
||||
void print(string s) const;
|
||||
|
||||
// enabling serialization functionality
|
||||
void serializable() const;
|
||||
};
|
||||
|
||||
}///\namespace noiseModel
|
||||
|
||||
#include <gtsam/linear/Sampler.h>
|
||||
class Sampler {
|
||||
//Constructors
|
||||
Sampler(gtsam::noiseModel::Diagonal* model, int seed);
|
||||
Sampler(Vector sigmas, int seed);
|
||||
Sampler(int seed);
|
||||
//Sampler(const gtsam::Sampler& other);
|
||||
|
||||
|
||||
//Standard Interface
|
||||
size_t dim() const;
|
||||
Vector sigmas() const;
|
||||
gtsam::noiseModel::Diagonal* model() const;
|
||||
Vector sample();
|
||||
Vector sampleNewModel(gtsam::noiseModel::Diagonal* model);
|
||||
};
|
||||
|
||||
#include <gtsam/linear/VectorValues.h>
|
||||
class VectorValues {
|
||||
//Constructors
|
||||
VectorValues();
|
||||
VectorValues(const gtsam::VectorValues& other);
|
||||
|
||||
//Named Constructors
|
||||
static gtsam::VectorValues Zero(const gtsam::VectorValues& model);
|
||||
|
||||
//Standard Interface
|
||||
size_t size() const;
|
||||
size_t dim(size_t j) const;
|
||||
bool exists(size_t j) const;
|
||||
void print(string s) const;
|
||||
bool equals(const gtsam::VectorValues& expected, double tol) const;
|
||||
void insert(size_t j, Vector value);
|
||||
Vector vector() const;
|
||||
Vector at(size_t j) const;
|
||||
void update(const gtsam::VectorValues& values);
|
||||
|
||||
//Advanced Interface
|
||||
void setZero();
|
||||
|
||||
gtsam::VectorValues add(const gtsam::VectorValues& c) const;
|
||||
void addInPlace(const gtsam::VectorValues& c);
|
||||
gtsam::VectorValues subtract(const gtsam::VectorValues& c) const;
|
||||
gtsam::VectorValues scale(double a) const;
|
||||
void scaleInPlace(double a);
|
||||
|
||||
bool hasSameStructure(const gtsam::VectorValues& other) const;
|
||||
double dot(const gtsam::VectorValues& V) const;
|
||||
double norm() const;
|
||||
double squaredNorm() const;
|
||||
|
||||
// enabling serialization functionality
|
||||
void serialize() const;
|
||||
};
|
||||
|
||||
#include <gtsam/linear/GaussianFactor.h>
|
||||
virtual class GaussianFactor {
|
||||
gtsam::KeyVector keys() const;
|
||||
void print(string s) const;
|
||||
bool equals(const gtsam::GaussianFactor& lf, double tol) const;
|
||||
double error(const gtsam::VectorValues& c) const;
|
||||
gtsam::GaussianFactor* clone() const;
|
||||
gtsam::GaussianFactor* negate() const;
|
||||
Matrix augmentedInformation() const;
|
||||
Matrix information() const;
|
||||
Matrix augmentedJacobian() const;
|
||||
pair<Matrix, Vector> jacobian() const;
|
||||
size_t size() const;
|
||||
bool empty() const;
|
||||
};
|
||||
|
||||
#include <gtsam/linear/JacobianFactor.h>
|
||||
virtual class JacobianFactor : gtsam::GaussianFactor {
|
||||
//Constructors
|
||||
JacobianFactor();
|
||||
JacobianFactor(const gtsam::GaussianFactor& factor);
|
||||
JacobianFactor(Vector b_in);
|
||||
JacobianFactor(size_t i1, Matrix A1, Vector b,
|
||||
const gtsam::noiseModel::Diagonal* model);
|
||||
JacobianFactor(size_t i1, Matrix A1, size_t i2, Matrix A2, Vector b,
|
||||
const gtsam::noiseModel::Diagonal* model);
|
||||
JacobianFactor(size_t i1, Matrix A1, size_t i2, Matrix A2, size_t i3, Matrix A3,
|
||||
Vector b, const gtsam::noiseModel::Diagonal* model);
|
||||
//JacobianFactor(const gtsam::GaussianFactorGraph& graph);
|
||||
//JacobianFactor(const gtsam::JacobianFactor& other);
|
||||
|
||||
//Testable
|
||||
void print(string s) const;
|
||||
void printKeys(string s) const;
|
||||
bool equals(const gtsam::GaussianFactor& lf, double tol) const;
|
||||
size_t size() const;
|
||||
Vector unweighted_error(const gtsam::VectorValues& c) const;
|
||||
Vector error_vector(const gtsam::VectorValues& c) const;
|
||||
double error(const gtsam::VectorValues& c) const;
|
||||
|
||||
//Standard Interface
|
||||
Matrix getA() const;
|
||||
Vector getb() const;
|
||||
size_t rows() const;
|
||||
size_t cols() const;
|
||||
bool isConstrained() const;
|
||||
pair<Matrix, Vector> jacobianUnweighted() const;
|
||||
Matrix augmentedJacobianUnweighted() const;
|
||||
|
||||
void transposeMultiplyAdd(double alpha, const Vector& e, gtsam::VectorValues& x) const;
|
||||
gtsam::JacobianFactor whiten() const;
|
||||
|
||||
//pair<gtsam::GaussianConditional*, gtsam::JacobianFactor*> eliminate(const gtsam::Ordering& keys) const;
|
||||
|
||||
void setModel(bool anyConstrained, const Vector& sigmas);
|
||||
|
||||
gtsam::noiseModel::Diagonal* get_model() const;
|
||||
|
||||
// enabling serialization functionality
|
||||
void serialize() const;
|
||||
};
|
||||
|
||||
#include <gtsam/linear/HessianFactor.h>
|
||||
virtual class HessianFactor : gtsam::GaussianFactor {
|
||||
//Constructors
|
||||
HessianFactor();
|
||||
HessianFactor(const gtsam::GaussianFactor& factor);
|
||||
HessianFactor(size_t j, Matrix G, Vector g, double f);
|
||||
HessianFactor(size_t j, Vector mu, Matrix Sigma);
|
||||
HessianFactor(size_t j1, size_t j2, Matrix G11, Matrix G12, Vector g1, Matrix G22,
|
||||
Vector g2, double f);
|
||||
HessianFactor(size_t j1, size_t j2, size_t j3, Matrix G11, Matrix G12, Matrix G13,
|
||||
Vector g1, Matrix G22, Matrix G23, Vector g2, Matrix G33, Vector g3,
|
||||
double f);
|
||||
//HessianFactor(const gtsam::GaussianFactorGraph& factors);
|
||||
//HessianFactor(const gtsam::HessianFactor& other);
|
||||
|
||||
//Testable
|
||||
size_t size() const;
|
||||
void print(string s) const;
|
||||
void printKeys(string s) const;
|
||||
bool equals(const gtsam::GaussianFactor& lf, double tol) const;
|
||||
double error(const gtsam::VectorValues& c) const;
|
||||
|
||||
//Standard Interface
|
||||
size_t rows() const;
|
||||
Matrix information() const;
|
||||
double constantTerm() const;
|
||||
Vector linearTerm() const;
|
||||
|
||||
// enabling serialization functionality
|
||||
void serialize() const;
|
||||
};
|
||||
|
||||
#include <gtsam/nonlinear/Values.h>
|
||||
class Values {
|
||||
Values();
|
||||
//Values(const gtsam::Values& other);
|
||||
|
||||
size_t size() const;
|
||||
bool empty() const;
|
||||
void clear();
|
||||
size_t dim() const;
|
||||
|
||||
void print(string s) const;
|
||||
bool equals(const gtsam::Values& other, double tol) const;
|
||||
|
||||
void insert(const gtsam::Values& values);
|
||||
void update(const gtsam::Values& values);
|
||||
void erase(size_t j);
|
||||
void swap(gtsam::Values& values);
|
||||
|
||||
bool exists(size_t j) const;
|
||||
gtsam::KeyVector keys() const;
|
||||
|
||||
gtsam::VectorValues zeroVectors() const;
|
||||
|
||||
gtsam::Values retract(const gtsam::VectorValues& delta) const;
|
||||
gtsam::VectorValues localCoordinates(const gtsam::Values& cp) const;
|
||||
|
||||
// enabling serialization functionality
|
||||
void serialize() const;
|
||||
|
||||
// New in 4.0, we have to specialize every insert/update/at to generate wrappers
|
||||
// Instead of the old:
|
||||
// void insert(size_t j, const gtsam::Value& value);
|
||||
// void update(size_t j, const gtsam::Value& val);
|
||||
// gtsam::Value at(size_t j) const;
|
||||
|
||||
// template <T = {gtsam::Point2, gtsam::Rot2, gtsam::Pose2, gtsam::Point3,
|
||||
// gtsam::Rot3, gtsam::Pose3}>
|
||||
// void insert(size_t j, const T& t);
|
||||
|
||||
// template <T = {gtsam::Point2, gtsam::Rot2, gtsam::Pose2, gtsam::Point3,
|
||||
// gtsam::Rot3, gtsam::Pose3}>
|
||||
// void update(size_t j, const T& t);
|
||||
void insert(size_t j, const gtsam::Point2& t);
|
||||
void insert(size_t j, const gtsam::Point3& t);
|
||||
void insert(size_t j, const gtsam::Rot2& t);
|
||||
void insert(size_t j, const gtsam::Pose2& t);
|
||||
void insert(size_t j, const gtsam::Rot3& t);
|
||||
void insert(size_t j, const gtsam::Pose3& t);
|
||||
void insert(size_t j, Vector t);
|
||||
void insert(size_t j, Matrix t);
|
||||
|
||||
void update(size_t j, const gtsam::Point2& t);
|
||||
void update(size_t j, const gtsam::Point3& t);
|
||||
void update(size_t j, const gtsam::Rot2& t);
|
||||
void update(size_t j, const gtsam::Pose2& t);
|
||||
void update(size_t j, const gtsam::Rot3& t);
|
||||
void update(size_t j, const gtsam::Pose3& t);
|
||||
void update(size_t j, Vector t);
|
||||
void update(size_t j, Matrix t);
|
||||
|
||||
template <T = {gtsam::Point2, gtsam::Rot2, gtsam::Pose2, gtsam::Point3,
|
||||
gtsam::Rot3, gtsam::Pose3, Vector, Matrix}>
|
||||
T at(size_t j);
|
||||
|
||||
/// version for double
|
||||
void insertDouble(size_t j, double c);
|
||||
double atDouble(size_t j) const;
|
||||
};
|
||||
|
||||
#include <gtsam/nonlinear/NonlinearFactor.h>
|
||||
virtual class NonlinearFactor {
|
||||
// Factor base class
|
||||
size_t size() const;
|
||||
gtsam::KeyVector keys() const;
|
||||
void print(string s) const;
|
||||
void printKeys(string s) const;
|
||||
// NonlinearFactor
|
||||
bool equals(const gtsam::NonlinearFactor& other, double tol) const;
|
||||
|
||||
double error(const gtsam::Values& c) const;
|
||||
size_t dim() const;
|
||||
bool active(const gtsam::Values& c) const;
|
||||
gtsam::GaussianFactor* linearize(const gtsam::Values& c) const;
|
||||
gtsam::NonlinearFactor* clone() const;
|
||||
// gtsam::NonlinearFactor* rekey(const gtsam::KeyVector& newKeys) const; //FIXME: Conversion from KeyVector to std::vector does not happen
|
||||
};
|
||||
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
class NonlinearFactorGraph {
|
||||
NonlinearFactorGraph();
|
||||
//NonlinearFactorGraph(const gtsam::NonlinearFactorGraph& graph);
|
||||
|
||||
// FactorGraph
|
||||
void print(string s) const;
|
||||
bool equals(const gtsam::NonlinearFactorGraph& fg, double tol) const;
|
||||
size_t size() const;
|
||||
bool empty() const;
|
||||
void remove(size_t i);
|
||||
size_t nrFactors() const;
|
||||
gtsam::NonlinearFactor* at(size_t idx) const;
|
||||
void push_back(const gtsam::NonlinearFactorGraph& factors);
|
||||
void push_back(gtsam::NonlinearFactor* factor);
|
||||
void add(gtsam::NonlinearFactor* factor);
|
||||
bool exists(size_t idx) const;
|
||||
// gtsam::KeySet keys() const;
|
||||
|
||||
// NonlinearFactorGraph
|
||||
double error(const gtsam::Values& values) const;
|
||||
double probPrime(const gtsam::Values& values) const;
|
||||
//gtsam::Ordering orderingCOLAMD() const;
|
||||
// Ordering* orderingCOLAMDConstrained(const gtsam::Values& c, const std::map<gtsam::Key,int>& constraints) const;
|
||||
//gtsam::GaussianFactorGraph* linearize(const gtsam::Values& values) const;
|
||||
gtsam::NonlinearFactorGraph clone() const;
|
||||
|
||||
// enabling serialization functionality
|
||||
void serialize() const;
|
||||
};
|
||||
|
||||
#include <gtsam/nonlinear/NonlinearFactor.h>
|
||||
virtual class NoiseModelFactor: gtsam::NonlinearFactor {
|
||||
void equals(const gtsam::NoiseModelFactor& other, double tol) const;
|
||||
gtsam::noiseModel::Base* get_noiseModel() const; // deprecated by below
|
||||
gtsam::noiseModel::Base* noiseModel() const;
|
||||
Vector unwhitenedError(const gtsam::Values& x) const;
|
||||
Vector whitenedError(const gtsam::Values& x) const;
|
||||
};
|
||||
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
template<T = {Vector, gtsam::Point2, gtsam::Point3, gtsam::Rot2, gtsam::Rot3, gtsam::Pose2, gtsam::Pose3}>
|
||||
virtual class PriorFactor : gtsam::NoiseModelFactor {
|
||||
PriorFactor(size_t key, const T& prior, const gtsam::noiseModel::Base* noiseModel);
|
||||
//PriorFactor(const This& other);
|
||||
T prior() const;
|
||||
|
||||
// enabling serialization functionality
|
||||
void serialize() const;
|
||||
};
|
||||
|
||||
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
template<T = {Vector, gtsam::Point2, gtsam::Point3, gtsam::Rot2, gtsam::Rot3, gtsam::Pose2, gtsam::Pose3}>
|
||||
virtual class BetweenFactor : gtsam::NoiseModelFactor {
|
||||
BetweenFactor(size_t key1, size_t key2, const T& relativePose, const gtsam::noiseModel::Base* noiseModel);
|
||||
//BetweenFactor(const This& other);
|
||||
T measured() const;
|
||||
|
||||
// enabling serialization functionality
|
||||
void serialize() const;
|
||||
};
|
||||
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
size_t symbol(char chr, size_t index);
|
||||
char symbolChr(size_t key);
|
||||
size_t symbolIndex(size_t key);
|
||||
|
||||
#include <gtsam/inference/Key.h>
|
||||
// Default keyformatter
|
||||
void PrintKeyVector(const gtsam::KeyVector& keys);
|
||||
void PrintKeyVector(const gtsam::KeyVector& keys, string s);
|
||||
|
||||
#include <gtsam/nonlinear/NonlinearOptimizer.h>
|
||||
bool checkConvergence(double relativeErrorTreshold,
|
||||
double absoluteErrorTreshold, double errorThreshold,
|
||||
double currentError, double newError);
|
||||
|
||||
#include <gtsam/slam/dataset.h>
|
||||
pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> load2D(string filename,
|
||||
gtsam::noiseModel::Diagonal* model, int maxID, bool addNoise, bool smart);
|
||||
pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> load2D(string filename,
|
||||
gtsam::noiseModel::Diagonal* model, int maxID, bool addNoise);
|
||||
pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> load2D(string filename,
|
||||
gtsam::noiseModel::Diagonal* model, int maxID);
|
||||
pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> load2D(string filename,
|
||||
gtsam::noiseModel::Diagonal* model);
|
||||
pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> load2D(string filename);
|
||||
pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> load2D_robust(string filename,
|
||||
gtsam::noiseModel::Base* model);
|
||||
void save2D(const gtsam::NonlinearFactorGraph& graph,
|
||||
const gtsam::Values& config, gtsam::noiseModel::Diagonal* model,
|
||||
string filename);
|
||||
|
||||
pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> readG2o(string filename);
|
||||
void writeG2o(const gtsam::NonlinearFactorGraph& graph,
|
||||
const gtsam::Values& estimate, string filename);
|
||||
|
||||
//*************************************************************************
|
||||
// Utilities
|
||||
//*************************************************************************
|
||||
|
||||
namespace utilities {
|
||||
|
||||
#include <gtsam/nonlinear/utilities.h>
|
||||
// gtsam::KeyList createKeyList(Vector I);
|
||||
// gtsam::KeyList createKeyList(string s, Vector I);
|
||||
gtsam::KeyVector createKeyVector(Vector I);
|
||||
gtsam::KeyVector createKeyVector(string s, Vector I);
|
||||
// gtsam::KeySet createKeySet(Vector I);
|
||||
// gtsam::KeySet createKeySet(string s, Vector I);
|
||||
Matrix extractPoint2(const gtsam::Values& values);
|
||||
Matrix extractPoint3(const gtsam::Values& values);
|
||||
Matrix extractPose2(const gtsam::Values& values);
|
||||
gtsam::Values allPose3s(gtsam::Values& values);
|
||||
Matrix extractPose3(const gtsam::Values& values);
|
||||
void perturbPoint2(gtsam::Values& values, double sigma, int seed);
|
||||
void perturbPose2 (gtsam::Values& values, double sigmaT, double sigmaR, int seed);
|
||||
void perturbPoint3(gtsam::Values& values, double sigma, int seed);
|
||||
// void insertBackprojections(gtsam::Values& values, const gtsam::SimpleCamera& c, Vector J, Matrix Z, double depth);
|
||||
// void insertProjectionFactors(gtsam::NonlinearFactorGraph& graph, size_t i, Vector J, Matrix Z, const gtsam::noiseModel::Base* model, const gtsam::Cal3_S2* K);
|
||||
// void insertProjectionFactors(gtsam::NonlinearFactorGraph& graph, size_t i, Vector J, Matrix Z, const gtsam::noiseModel::Base* model, const gtsam::Cal3_S2* K, const gtsam::Pose3& body_P_sensor);
|
||||
Matrix reprojectionErrors(const gtsam::NonlinearFactorGraph& graph, const gtsam::Values& values);
|
||||
gtsam::Values localToWorld(const gtsam::Values& local, const gtsam::Pose2& base);
|
||||
gtsam::Values localToWorld(const gtsam::Values& local, const gtsam::Pose2& base, const gtsam::KeyVector& keys);
|
||||
|
||||
} //\namespace utilities
|
||||
|
||||
#include <gtsam/nonlinear/utilities.h>
|
||||
class RedirectCout {
|
||||
RedirectCout();
|
||||
string str();
|
||||
};
|
||||
|
||||
} //\namespace gtsam
|
|
@ -0,0 +1,22 @@
|
|||
import unittest
|
||||
import gtsam
|
||||
import numpy as np
|
||||
|
||||
|
||||
class TestCal3Unified(unittest.TestCase):
|
||||
|
||||
def test_Cal3Unified(self):
|
||||
K = gtsam.Cal3Unified()
|
||||
self.assertEqual(K.fx(), 1.)
|
||||
self.assertEqual(K.fx(), 1.)
|
||||
|
||||
def test_retract(self):
|
||||
expected = gtsam.Cal3Unified(100 + 2, 105 + 3, 0.0 + 4, 320 + 5, 240 + 6, 1e-3 + 7, 2.0*1e-3 + 8, 3.0*1e-3 + 9, 4.0*1e-3 + 10, 0.1 + 1)
|
||||
K = gtsam.Cal3Unified(100, 105, 0.0, 320, 240, 1e-3, 2.0*1e-3, 3.0*1e-3, 4.0*1e-3, 0.1)
|
||||
d = np.array([2, 3, 4, 5, 6, 7, 8, 9, 10, 1], order='F')
|
||||
actual = K.retract(d)
|
||||
self.assertTrue(actual.equals(expected, 1e-9))
|
||||
np.testing.assert_allclose(d, K.localCoordinates(actual))
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
|
@ -0,0 +1,78 @@
|
|||
import unittest
|
||||
import gtsam
|
||||
import numpy as np
|
||||
|
||||
class TestJacobianFactor(unittest.TestCase):
|
||||
|
||||
def test_eliminate(self):
|
||||
# Recommended way to specify a matrix (see cython/README)
|
||||
Ax2 = np.array(
|
||||
[[-5., 0.],
|
||||
[+0., -5.],
|
||||
[10., 0.],
|
||||
[+0., 10.]], order='F')
|
||||
|
||||
# This is good too
|
||||
Al1 = np.array(
|
||||
[[5, 0],
|
||||
[0, 5],
|
||||
[0, 0],
|
||||
[0, 0]], dtype=float, order = 'F')
|
||||
|
||||
# Not recommended for performance reasons, but should still work
|
||||
# as the wrapper should convert it to the correct type and storage order
|
||||
Ax1 = np.array(
|
||||
[[0, 0], # f4
|
||||
[0, 0], # f4
|
||||
[-10, 0], # f2
|
||||
[0, -10]]) # f2
|
||||
|
||||
x2 = 1
|
||||
l1 = 2
|
||||
x1 = 3
|
||||
|
||||
# the RHS
|
||||
b2 = np.array([-1., 1.5, 2., -1.])
|
||||
sigmas = np.array([1., 1., 1., 1.])
|
||||
model4 = gtsam.noiseModel_Diagonal.Sigmas(sigmas)
|
||||
combined = gtsam.JacobianFactor(x2, Ax2, l1, Al1, x1, Ax1, b2, model4)
|
||||
|
||||
# eliminate the first variable (x2) in the combined factor, destructive
|
||||
# !
|
||||
ord = gtsam.Ordering()
|
||||
ord.push_back(x2)
|
||||
actualCG, lf = combined.eliminate(ord)
|
||||
|
||||
# create expected Conditional Gaussian
|
||||
R11 = np.array([[11.1803, 0.00],
|
||||
[0.00, 11.1803]])
|
||||
S12 = np.array([[-2.23607, 0.00],
|
||||
[+0.00, -2.23607]])
|
||||
S13 = np.array([[-8.94427, 0.00],
|
||||
[+0.00, -8.94427]])
|
||||
d = np.array([2.23607, -1.56525])
|
||||
expectedCG = gtsam.GaussianConditional(
|
||||
x2, d, R11, l1, S12, x1, S13, gtsam.noiseModel_Unit.Create(2))
|
||||
# check if the result matches
|
||||
self.assertTrue(actualCG.equals(expectedCG, 1e-4))
|
||||
|
||||
# the expected linear factor
|
||||
Bl1 = np.array([[4.47214, 0.00],
|
||||
[0.00, 4.47214]])
|
||||
|
||||
Bx1 = np.array(
|
||||
# x1
|
||||
[[-4.47214, 0.00],
|
||||
[+0.00, -4.47214]])
|
||||
|
||||
# the RHS
|
||||
b1 = np.array([0.0, 0.894427])
|
||||
|
||||
model2 = gtsam.noiseModel_Diagonal.Sigmas(np.array([1., 1.]))
|
||||
expectedLF = gtsam.JacobianFactor(l1, Bl1, x1, Bx1, b1, model2)
|
||||
|
||||
# check if the result matches the combined (reduced) factor
|
||||
self.assertTrue(lf.equals(expectedLF, 1e-4))
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
|
@ -0,0 +1,69 @@
|
|||
import unittest
|
||||
import gtsam
|
||||
import numpy as np
|
||||
|
||||
class TestKalmanFilter(unittest.TestCase):
|
||||
|
||||
def test_KalmanFilter(self):
|
||||
F = np.eye(2)
|
||||
B = np.eye(2)
|
||||
u = np.array([1.0, 0.0])
|
||||
modelQ = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.1, 0.1]))
|
||||
Q = 0.01 * np.eye(2)
|
||||
H = np.eye(2)
|
||||
z1 = np.array([1.0, 0.0])
|
||||
z2 = np.array([2.0, 0.0])
|
||||
z3 = np.array([3.0, 0.0])
|
||||
modelR = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.1, 0.1]))
|
||||
R = 0.01 * np.eye(2)
|
||||
|
||||
# Create the set of expected output TestValues
|
||||
expected0 = np.array([0.0, 0.0])
|
||||
P00 = 0.01 * np.eye(2)
|
||||
|
||||
expected1 = np.array([1.0, 0.0])
|
||||
P01 = P00 + Q
|
||||
I11 = np.linalg.inv(P01) + np.linalg.inv(R)
|
||||
|
||||
expected2 = np.array([2.0, 0.0])
|
||||
P12 = np.linalg.inv(I11) + Q
|
||||
I22 = np.linalg.inv(P12) + np.linalg.inv(R)
|
||||
|
||||
expected3 = np.array([3.0, 0.0])
|
||||
P23 = np.linalg.inv(I22) + Q
|
||||
I33 = np.linalg.inv(P23) + np.linalg.inv(R)
|
||||
|
||||
# Create an KalmanFilter object
|
||||
KF = gtsam.KalmanFilter(n=2)
|
||||
|
||||
# Create the Kalman Filter initialization point
|
||||
x_initial = np.array([0.0, 0.0])
|
||||
P_initial = 0.01 * np.eye(2)
|
||||
|
||||
# Create an KF object
|
||||
state = KF.init(x_initial, P_initial)
|
||||
self.assertTrue(np.allclose(expected0, state.mean()))
|
||||
self.assertTrue(np.allclose(P00, state.covariance()))
|
||||
|
||||
# Run iteration 1
|
||||
state = KF.predict(state, F, B, u, modelQ)
|
||||
self.assertTrue(np.allclose(expected1, state.mean()))
|
||||
self.assertTrue(np.allclose(P01, state.covariance()))
|
||||
state = KF.update(state, H, z1, modelR)
|
||||
self.assertTrue(np.allclose(expected1, state.mean()))
|
||||
self.assertTrue(np.allclose(I11, state.information()))
|
||||
|
||||
# Run iteration 2
|
||||
state = KF.predict(state, F, B, u, modelQ)
|
||||
self.assertTrue(np.allclose(expected2, state.mean()))
|
||||
state = KF.update(state, H, z2, modelR)
|
||||
self.assertTrue(np.allclose(expected2, state.mean()))
|
||||
|
||||
# Run iteration 3
|
||||
state = KF.predict(state, F, B, u, modelQ)
|
||||
self.assertTrue(np.allclose(expected3, state.mean()))
|
||||
state = KF.update(state, H, z3, modelR)
|
||||
self.assertTrue(np.allclose(expected3, state.mean()))
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
|
@ -0,0 +1,50 @@
|
|||
import unittest
|
||||
import gtsam
|
||||
import numpy as np
|
||||
|
||||
class TestLocalizationExample(unittest.TestCase):
|
||||
|
||||
def test_LocalizationExample(self):
|
||||
# Create the graph (defined in pose2SLAM.h, derived from
|
||||
# NonlinearFactorGraph)
|
||||
graph = gtsam.NonlinearFactorGraph()
|
||||
|
||||
# Add two odometry factors
|
||||
# create a measurement for both factors (the same in this case)
|
||||
odometry = gtsam.Pose2(2.0, 0.0, 0.0)
|
||||
odometryNoise = gtsam.noiseModel_Diagonal.Sigmas(
|
||||
np.array([0.2, 0.2, 0.1])) # 20cm std on x,y, 0.1 rad on theta
|
||||
graph.add(gtsam.BetweenFactorPose2(0, 1, odometry, odometryNoise))
|
||||
graph.add(gtsam.BetweenFactorPose2(1, 2, odometry, odometryNoise))
|
||||
|
||||
# Add three "GPS" measurements
|
||||
# We use Pose2 Priors here with high variance on theta
|
||||
groundTruth = gtsam.Values()
|
||||
groundTruth.insert(0, gtsam.Pose2(0.0, 0.0, 0.0))
|
||||
groundTruth.insert(1, gtsam.Pose2(2.0, 0.0, 0.0))
|
||||
groundTruth.insert(2, gtsam.Pose2(4.0, 0.0, 0.0))
|
||||
model = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.1, 0.1, 10.]))
|
||||
for i in range(3):
|
||||
graph.add(gtsam.PriorFactorPose2(i, groundTruth.atPose2(i), model))
|
||||
|
||||
# Initialize to noisy points
|
||||
initialEstimate = gtsam.Values()
|
||||
initialEstimate.insert(0, gtsam.Pose2(0.5, 0.0, 0.2))
|
||||
initialEstimate.insert(1, gtsam.Pose2(2.3, 0.1, -0.2))
|
||||
initialEstimate.insert(2, gtsam.Pose2(4.1, 0.1, 0.1))
|
||||
|
||||
# Optimize using Levenberg-Marquardt optimization with an ordering from
|
||||
# colamd
|
||||
optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initialEstimate)
|
||||
result = optimizer.optimizeSafely()
|
||||
|
||||
# Plot Covariance Ellipses
|
||||
marginals = gtsam.Marginals(graph, result)
|
||||
P = [None] * result.size()
|
||||
for i in range(0, result.size()):
|
||||
pose_i = result.atPose2(i)
|
||||
self.assertTrue(pose_i.equals(groundTruth.atPose2(i), 1e-4))
|
||||
P[i] = marginals.marginalCovariance(i)
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
|
@ -0,0 +1,45 @@
|
|||
import unittest
|
||||
import gtsam
|
||||
import numpy as np
|
||||
|
||||
class TestOdometryExample(unittest.TestCase):
|
||||
|
||||
def test_OdometryExample(self):
|
||||
# Create the graph (defined in pose2SLAM.h, derived from
|
||||
# NonlinearFactorGraph)
|
||||
graph = gtsam.NonlinearFactorGraph()
|
||||
|
||||
# Add a Gaussian prior on pose x_1
|
||||
priorMean = gtsam.Pose2(0.0, 0.0, 0.0) # prior mean is at origin
|
||||
priorNoise = gtsam.noiseModel_Diagonal.Sigmas(
|
||||
np.array([0.3, 0.3, 0.1])) # 30cm std on x,y, 0.1 rad on theta
|
||||
# add directly to graph
|
||||
graph.add(gtsam.PriorFactorPose2(1, priorMean, priorNoise))
|
||||
|
||||
# Add two odometry factors
|
||||
# create a measurement for both factors (the same in this case)
|
||||
odometry = gtsam.Pose2(2.0, 0.0, 0.0)
|
||||
odometryNoise = gtsam.noiseModel_Diagonal.Sigmas(
|
||||
np.array([0.2, 0.2, 0.1])) # 20cm std on x,y, 0.1 rad on theta
|
||||
graph.add(gtsam.BetweenFactorPose2(1, 2, odometry, odometryNoise))
|
||||
graph.add(gtsam.BetweenFactorPose2(2, 3, odometry, odometryNoise))
|
||||
|
||||
# Initialize to noisy points
|
||||
initialEstimate = gtsam.Values()
|
||||
initialEstimate.insert(1, gtsam.Pose2(0.5, 0.0, 0.2))
|
||||
initialEstimate.insert(2, gtsam.Pose2(2.3, 0.1, -0.2))
|
||||
initialEstimate.insert(3, gtsam.Pose2(4.1, 0.1, 0.1))
|
||||
|
||||
# Optimize using Levenberg-Marquardt optimization with an ordering from
|
||||
# colamd
|
||||
optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initialEstimate)
|
||||
result = optimizer.optimizeSafely()
|
||||
marginals = gtsam.Marginals(graph, result)
|
||||
marginals.marginalCovariance(1)
|
||||
|
||||
# Check first pose equality
|
||||
pose_1 = result.atPose2(1)
|
||||
self.assertTrue(pose_1.equals(gtsam.Pose2(), 1e-4))
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
|
@ -0,0 +1,64 @@
|
|||
import unittest
|
||||
import gtsam
|
||||
from math import pi
|
||||
import numpy as np
|
||||
|
||||
class TestPose2SLAMExample(unittest.TestCase):
|
||||
|
||||
def test_Pose2SLAMExample(self):
|
||||
# Assumptions
|
||||
# - All values are axis aligned
|
||||
# - Robot poses are facing along the X axis (horizontal, to the right in images)
|
||||
# - We have full odometry for measurements
|
||||
# - The robot is on a grid, moving 2 meters each step
|
||||
|
||||
# Create graph container and add factors to it
|
||||
graph = gtsam.NonlinearFactorGraph()
|
||||
|
||||
# Add prior
|
||||
# gaussian for prior
|
||||
priorMean = gtsam.Pose2(0.0, 0.0, 0.0) # prior at origin
|
||||
priorNoise = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.3, 0.3, 0.1]))
|
||||
# add directly to graph
|
||||
graph.add(gtsam.PriorFactorPose2(1, priorMean, priorNoise))
|
||||
|
||||
# Add odometry
|
||||
# general noisemodel for odometry
|
||||
odometryNoise = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.2, 0.2, 0.1]))
|
||||
graph.add(gtsam.BetweenFactorPose2(
|
||||
1, 2, gtsam.Pose2(2.0, 0.0, 0.0), odometryNoise))
|
||||
graph.add(gtsam.BetweenFactorPose2(
|
||||
2, 3, gtsam.Pose2(2.0, 0.0, pi / 2), odometryNoise))
|
||||
graph.add(gtsam.BetweenFactorPose2(
|
||||
3, 4, gtsam.Pose2(2.0, 0.0, pi / 2), odometryNoise))
|
||||
graph.add(gtsam.BetweenFactorPose2(
|
||||
4, 5, gtsam.Pose2(2.0, 0.0, pi / 2), odometryNoise))
|
||||
|
||||
# Add pose constraint
|
||||
model = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.2, 0.2, 0.1]))
|
||||
graph.add(gtsam.BetweenFactorPose2(5, 2, gtsam.Pose2(2.0, 0.0, pi / 2), model))
|
||||
|
||||
# Initialize to noisy points
|
||||
initialEstimate = gtsam.Values()
|
||||
initialEstimate.insert(1, gtsam.Pose2(0.5, 0.0, 0.2))
|
||||
initialEstimate.insert(2, gtsam.Pose2(2.3, 0.1, -0.2))
|
||||
initialEstimate.insert(3, gtsam.Pose2(4.1, 0.1, pi / 2))
|
||||
initialEstimate.insert(4, gtsam.Pose2(4.0, 2.0, pi))
|
||||
initialEstimate.insert(5, gtsam.Pose2(2.1, 2.1, -pi / 2))
|
||||
|
||||
# Optimize using Levenberg-Marquardt optimization with an ordering from
|
||||
# colamd
|
||||
optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initialEstimate)
|
||||
result = optimizer.optimizeSafely()
|
||||
|
||||
# Plot Covariance Ellipses
|
||||
marginals = gtsam.Marginals(graph, result)
|
||||
P = marginals.marginalCovariance(1)
|
||||
|
||||
pose_1 = result.atPose2(1)
|
||||
self.assertTrue(pose_1.equals(gtsam.Pose2(), 1e-4))
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
|
@ -0,0 +1,62 @@
|
|||
import unittest
|
||||
import gtsam
|
||||
from math import pi
|
||||
import numpy as np
|
||||
|
||||
class TestPose2SLAMExample(unittest.TestCase):
|
||||
|
||||
def test_Pose2SLAMExample(self):
|
||||
# Assumptions
|
||||
# - All values are axis aligned
|
||||
# - Robot poses are facing along the X axis (horizontal, to the right in images)
|
||||
# - We have full odometry for measurements
|
||||
# - The robot is on a grid, moving 2 meters each step
|
||||
|
||||
# Create graph container and add factors to it
|
||||
graph = gtsam.NonlinearFactorGraph()
|
||||
|
||||
# Add prior
|
||||
# gaussian for prior
|
||||
priorMean = gtsam.Pose2(0.0, 0.0, 0.0) # prior at origin
|
||||
priorNoise = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.3, 0.3, 0.1]))
|
||||
# add directly to graph
|
||||
graph.add(gtsam.PriorFactorPose2(1, priorMean, priorNoise))
|
||||
|
||||
# Add odometry
|
||||
# general noisemodel for odometry
|
||||
odometryNoise = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.2, 0.2, 0.1]))
|
||||
graph.add(gtsam.BetweenFactorPose2(
|
||||
1, 2, gtsam.Pose2(2.0, 0.0, 0.0), odometryNoise))
|
||||
graph.add(gtsam.BetweenFactorPose2(
|
||||
2, 3, gtsam.Pose2(2.0, 0.0, pi / 2), odometryNoise))
|
||||
graph.add(gtsam.BetweenFactorPose2(
|
||||
3, 4, gtsam.Pose2(2.0, 0.0, pi / 2), odometryNoise))
|
||||
graph.add(gtsam.BetweenFactorPose2(
|
||||
4, 5, gtsam.Pose2(2.0, 0.0, pi / 2), odometryNoise))
|
||||
|
||||
# Add pose constraint
|
||||
model = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.2, 0.2, 0.1]))
|
||||
graph.add(gtsam.BetweenFactorPose2(5, 2, gtsam.Pose2(2.0, 0.0, pi / 2), model))
|
||||
|
||||
# Initialize to noisy points
|
||||
initialEstimate = gtsam.Values()
|
||||
initialEstimate.insert(1, gtsam.Pose2(0.5, 0.0, 0.2))
|
||||
initialEstimate.insert(2, gtsam.Pose2(2.3, 0.1, -0.2))
|
||||
initialEstimate.insert(3, gtsam.Pose2(4.1, 0.1, pi / 2))
|
||||
initialEstimate.insert(4, gtsam.Pose2(4.0, 2.0, pi))
|
||||
initialEstimate.insert(5, gtsam.Pose2(2.1, 2.1, -pi / 2))
|
||||
|
||||
# Optimize using Levenberg-Marquardt optimization with an ordering from
|
||||
# colamd
|
||||
optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initialEstimate)
|
||||
result = optimizer.optimizeSafely()
|
||||
|
||||
# Plot Covariance Ellipses
|
||||
marginals = gtsam.Marginals(graph, result)
|
||||
P = marginals.marginalCovariance(1)
|
||||
|
||||
pose_1 = result.atPose2(1)
|
||||
self.assertTrue(pose_1.equals(gtsam.Pose2(), 1e-4))
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
|
@ -0,0 +1,44 @@
|
|||
import math
|
||||
import unittest
|
||||
|
||||
from gtsam import Point3, Rot3, Pose3
|
||||
|
||||
|
||||
class TestPose3(unittest.TestCase):
|
||||
|
||||
def test__between(self):
|
||||
T2 = Pose3(Rot3.Rodrigues(0.3,0.2,0.1),Point3(3.5,-8.2,4.2))
|
||||
T3 = Pose3(Rot3.Rodrigues(-90, 0, 0), Point3(1, 2, 3))
|
||||
expected = T2.inverse().compose(T3)
|
||||
actual = T2.between(T3)
|
||||
self.assertTrue(actual.equals(expected, 1e-6))
|
||||
|
||||
def test_transform_to(self):
|
||||
transform = Pose3(Rot3.Rodrigues(0,0,-1.570796), Point3(2,4, 0))
|
||||
actual = transform.transform_to(Point3(3,2,10))
|
||||
expected = Point3 (2,1,10)
|
||||
self.assertTrue(actual.equals(expected, 1e-6))
|
||||
|
||||
def test_range(self):
|
||||
l1 = Point3(1, 0, 0)
|
||||
l2 = Point3(1, 1, 0)
|
||||
x1 = Pose3()
|
||||
|
||||
xl1 = Pose3(Rot3.Ypr(0.0, 0.0, 0.0), Point3(1, 0, 0))
|
||||
xl2 = Pose3(Rot3.Ypr(0.0, 1.0, 0.0), Point3(1, 1, 0))
|
||||
|
||||
# establish range is indeed zero
|
||||
self.assertEqual(1,x1.range(point=l1))
|
||||
|
||||
# establish range is indeed sqrt2
|
||||
self.assertEqual(math.sqrt(2.0),x1.range(point=l2))
|
||||
|
||||
# establish range is indeed zero
|
||||
self.assertEqual(1,x1.range(pose=xl1))
|
||||
|
||||
# establish range is indeed sqrt2
|
||||
self.assertEqual(math.sqrt(2.0),x1.range(pose=xl2))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
|
@ -0,0 +1,46 @@
|
|||
import unittest
|
||||
import numpy as np
|
||||
import gtsam
|
||||
from math import pi
|
||||
from gtsam.utils.circlePose3 import *
|
||||
|
||||
class TestPose3SLAMExample(unittest.TestCase):
|
||||
|
||||
def test_Pose3SLAMExample(self):
|
||||
# Create a hexagon of poses
|
||||
hexagon = circlePose3(6, 1.0)
|
||||
p0 = hexagon.atPose3(0)
|
||||
p1 = hexagon.atPose3(1)
|
||||
|
||||
# create a Pose graph with one equality constraint and one measurement
|
||||
fg = gtsam.NonlinearFactorGraph()
|
||||
fg.add(gtsam.NonlinearEqualityPose3(0, p0))
|
||||
delta = p0.between(p1)
|
||||
covariance = gtsam.noiseModel_Diagonal.Sigmas(
|
||||
np.array([0.05, 0.05, 0.05, 5. * pi / 180, 5. * pi / 180, 5. * pi / 180]))
|
||||
fg.add(gtsam.BetweenFactorPose3(0, 1, delta, covariance))
|
||||
fg.add(gtsam.BetweenFactorPose3(1, 2, delta, covariance))
|
||||
fg.add(gtsam.BetweenFactorPose3(2, 3, delta, covariance))
|
||||
fg.add(gtsam.BetweenFactorPose3(3, 4, delta, covariance))
|
||||
fg.add(gtsam.BetweenFactorPose3(4, 5, delta, covariance))
|
||||
fg.add(gtsam.BetweenFactorPose3(5, 0, delta, covariance))
|
||||
|
||||
# Create initial config
|
||||
initial = gtsam.Values()
|
||||
s = 0.10
|
||||
initial.insert(0, p0)
|
||||
initial.insert(1, hexagon.atPose3(1).retract(s * np.random.randn(6, 1)))
|
||||
initial.insert(2, hexagon.atPose3(2).retract(s * np.random.randn(6, 1)))
|
||||
initial.insert(3, hexagon.atPose3(3).retract(s * np.random.randn(6, 1)))
|
||||
initial.insert(4, hexagon.atPose3(4).retract(s * np.random.randn(6, 1)))
|
||||
initial.insert(5, hexagon.atPose3(5).retract(s * np.random.randn(6, 1)))
|
||||
|
||||
# optimize
|
||||
optimizer = gtsam.LevenbergMarquardtOptimizer(fg, initial)
|
||||
result = optimizer.optimizeSafely()
|
||||
|
||||
pose_1 = result.atPose3(1)
|
||||
self.assertTrue(pose_1.equals(p1, 1e-4))
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
|
@ -0,0 +1,25 @@
|
|||
import unittest
|
||||
import gtsam
|
||||
import numpy as np
|
||||
|
||||
class TestPriorFactor(unittest.TestCase):
|
||||
|
||||
def test_PriorFactor(self):
|
||||
values = gtsam.Values()
|
||||
|
||||
key = 5
|
||||
priorPose3 = gtsam.Pose3()
|
||||
model = gtsam.noiseModel_Unit.Create(6)
|
||||
factor = gtsam.PriorFactorPose3(key, priorPose3, model)
|
||||
values.insert(key, priorPose3)
|
||||
self.assertEqual(factor.error(values), 0)
|
||||
|
||||
key = 3
|
||||
priorVector = np.array([0., 0., 0.])
|
||||
model = gtsam.noiseModel_Unit.Create(3)
|
||||
factor = gtsam.PriorFactorVector(key, priorVector, model)
|
||||
values.insert(key, priorVector)
|
||||
self.assertEqual(factor.error(values), 0)
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
|
@ -0,0 +1,69 @@
|
|||
import unittest
|
||||
import gtsam
|
||||
from gtsam import symbol
|
||||
import numpy as np
|
||||
import gtsam.utils.visual_data_generator as generator
|
||||
|
||||
|
||||
class TestSFMExample(unittest.TestCase):
|
||||
|
||||
def test_SFMExample(self):
|
||||
options = generator.Options()
|
||||
options.triangle = False
|
||||
options.nrCameras = 10
|
||||
|
||||
[data, truth] = generator.generate_data(options)
|
||||
|
||||
measurementNoiseSigma = 1.0
|
||||
pointNoiseSigma = 0.1
|
||||
poseNoiseSigmas = np.array([0.001, 0.001, 0.001, 0.1, 0.1, 0.1])
|
||||
|
||||
graph = gtsam.NonlinearFactorGraph()
|
||||
|
||||
# Add factors for all measurements
|
||||
measurementNoise = gtsam.noiseModel_Isotropic.Sigma(2, measurementNoiseSigma)
|
||||
for i in range(len(data.Z)):
|
||||
for k in range(len(data.Z[i])):
|
||||
j = data.J[i][k]
|
||||
graph.add(gtsam.GenericProjectionFactorCal3_S2(
|
||||
data.Z[i][k], measurementNoise,
|
||||
symbol(ord('x'), i), symbol(ord('p'), j), data.K))
|
||||
|
||||
posePriorNoise = gtsam.noiseModel_Diagonal.Sigmas(poseNoiseSigmas)
|
||||
graph.add(gtsam.PriorFactorPose3(symbol(ord('x'), 0),
|
||||
truth.cameras[0].pose(), posePriorNoise))
|
||||
pointPriorNoise = gtsam.noiseModel_Isotropic.Sigma(3, pointNoiseSigma)
|
||||
graph.add(gtsam.PriorFactorPoint3(symbol(ord('p'), 0),
|
||||
truth.points[0], pointPriorNoise))
|
||||
|
||||
# Initial estimate
|
||||
initialEstimate = gtsam.Values()
|
||||
for i in range(len(truth.cameras)):
|
||||
pose_i = truth.cameras[i].pose()
|
||||
initialEstimate.insert(symbol(ord('x'), i), pose_i)
|
||||
for j in range(len(truth.points)):
|
||||
point_j = truth.points[j]
|
||||
initialEstimate.insert(symbol(ord('p'), j), point_j)
|
||||
|
||||
# Optimization
|
||||
optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initialEstimate)
|
||||
for i in range(5):
|
||||
optimizer.iterate()
|
||||
result = optimizer.values()
|
||||
|
||||
# Marginalization
|
||||
marginals = gtsam.Marginals(graph, result)
|
||||
marginals.marginalCovariance(symbol(ord('p'), 0))
|
||||
marginals.marginalCovariance(symbol(ord('x'), 0))
|
||||
|
||||
# Check optimized results, should be equal to ground truth
|
||||
for i in range(len(truth.cameras)):
|
||||
pose_i = result.atPose3(symbol(ord('x'), i))
|
||||
self.assertTrue(pose_i.equals(truth.cameras[i].pose(), 1e-5))
|
||||
|
||||
for j in range(len(truth.points)):
|
||||
point_j = result.atPoint3(symbol(ord('p'), j))
|
||||
self.assertTrue(point_j.equals(truth.points[j], 1e-5))
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
|
@ -0,0 +1,36 @@
|
|||
import math
|
||||
import unittest
|
||||
import numpy as np
|
||||
|
||||
import gtsam
|
||||
|
||||
|
||||
class TestScenario(unittest.TestCase):
|
||||
def setUp(self):
|
||||
pass
|
||||
|
||||
def test_loop(self):
|
||||
# Forward velocity 2m/s
|
||||
# Pitch up with angular velocity 6 degree/sec (negative in FLU)
|
||||
v = 2
|
||||
w = math.radians(6)
|
||||
W = np.array([0, -w, 0])
|
||||
V = np.array([v, 0, 0])
|
||||
scenario = gtsam.ConstantTwistScenario(W, V)
|
||||
|
||||
T = 30
|
||||
np.testing.assert_almost_equal(W, scenario.omega_b(T))
|
||||
np.testing.assert_almost_equal(V, scenario.velocity_b(T))
|
||||
np.testing.assert_almost_equal(
|
||||
np.cross(W, V), scenario.acceleration_b(T))
|
||||
|
||||
# R = v/w, so test if loop crests at 2*R
|
||||
R = v / w
|
||||
T30 = scenario.pose(T)
|
||||
np.testing.assert_almost_equal(
|
||||
np.array([math.pi, 0, math.pi]), T30.rotation().xyz())
|
||||
self.assert_(gtsam.Point3(0, 0, 2 * R).equals(T30.translation(), 1e-9))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
|
@ -0,0 +1,32 @@
|
|||
import math
|
||||
import numpy as np
|
||||
import unittest
|
||||
|
||||
from gtsam import Pose2, Point3, Rot3, Pose3, Cal3_S2, SimpleCamera
|
||||
|
||||
K = Cal3_S2(625, 625, 0, 0, 0)
|
||||
|
||||
class TestSimpleCamera(unittest.TestCase):
|
||||
|
||||
def test_constructor(self):
|
||||
pose1 = Pose3(Rot3(np.diag([1, -1, -1])), Point3(0, 0, 0.5))
|
||||
camera = SimpleCamera(pose1, K)
|
||||
self.assertTrue(camera.calibration().equals(K, 1e-9))
|
||||
self.assertTrue(camera.pose().equals(pose1, 1e-9))
|
||||
|
||||
def test_level2(self):
|
||||
# Create a level camera, looking in Y-direction
|
||||
pose2 = Pose2(0.4,0.3,math.pi/2.0)
|
||||
camera = SimpleCamera.Level(K, pose2, 0.1)
|
||||
|
||||
# expected
|
||||
x = Point3(1,0,0)
|
||||
y = Point3(0,0,-1)
|
||||
z = Point3(0,1,0)
|
||||
wRc = Rot3(x,y,z)
|
||||
expected = Pose3(wRc,Point3(0.4,0.3,0.1))
|
||||
self.assertTrue(camera.pose().equals(expected, 1e-9))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
|
@ -0,0 +1,69 @@
|
|||
import unittest
|
||||
import gtsam
|
||||
from gtsam import symbol
|
||||
import numpy as np
|
||||
|
||||
|
||||
class TestStereoVOExample(unittest.TestCase):
|
||||
|
||||
def test_StereoVOExample(self):
|
||||
## Assumptions
|
||||
# - For simplicity this example is in the camera's coordinate frame
|
||||
# - X: right, Y: down, Z: forward
|
||||
# - Pose x1 is at the origin, Pose 2 is 1 meter forward (along Z-axis)
|
||||
# - x1 is fixed with a constraint, x2 is initialized with noisy values
|
||||
# - No noise on measurements
|
||||
|
||||
## Create keys for variables
|
||||
x1 = symbol(ord('x'),1)
|
||||
x2 = symbol(ord('x'),2)
|
||||
l1 = symbol(ord('l'),1)
|
||||
l2 = symbol(ord('l'),2)
|
||||
l3 = symbol(ord('l'),3)
|
||||
|
||||
## Create graph container and add factors to it
|
||||
graph = gtsam.NonlinearFactorGraph()
|
||||
|
||||
## add a constraint on the starting pose
|
||||
first_pose = gtsam.Pose3()
|
||||
graph.add(gtsam.NonlinearEqualityPose3(x1, first_pose))
|
||||
|
||||
## Create realistic calibration and measurement noise model
|
||||
# format: fx fy skew cx cy baseline
|
||||
K = gtsam.Cal3_S2Stereo(1000, 1000, 0, 320, 240, 0.2)
|
||||
stereo_model = gtsam.noiseModel_Diagonal.Sigmas(np.array([1.0, 1.0, 1.0]))
|
||||
|
||||
## Add measurements
|
||||
# pose 1
|
||||
graph.add(gtsam.GenericStereoFactor3D(gtsam.StereoPoint2(520, 480, 440), stereo_model, x1, l1, K))
|
||||
graph.add(gtsam.GenericStereoFactor3D(gtsam.StereoPoint2(120, 80, 440), stereo_model, x1, l2, K))
|
||||
graph.add(gtsam.GenericStereoFactor3D(gtsam.StereoPoint2(320, 280, 140), stereo_model, x1, l3, K))
|
||||
|
||||
#pose 2
|
||||
graph.add(gtsam.GenericStereoFactor3D(gtsam.StereoPoint2(570, 520, 490), stereo_model, x2, l1, K))
|
||||
graph.add(gtsam.GenericStereoFactor3D(gtsam.StereoPoint2( 70, 20, 490), stereo_model, x2, l2, K))
|
||||
graph.add(gtsam.GenericStereoFactor3D(gtsam.StereoPoint2(320, 270, 115), stereo_model, x2, l3, K))
|
||||
|
||||
## Create initial estimate for camera poses and landmarks
|
||||
initialEstimate = gtsam.Values()
|
||||
initialEstimate.insert(x1, first_pose)
|
||||
# noisy estimate for pose 2
|
||||
initialEstimate.insert(x2, gtsam.Pose3(gtsam.Rot3(), gtsam.Point3(0.1,-.1,1.1)))
|
||||
expected_l1 = gtsam.Point3( 1, 1, 5)
|
||||
initialEstimate.insert(l1, expected_l1)
|
||||
initialEstimate.insert(l2, gtsam.Point3(-1, 1, 5))
|
||||
initialEstimate.insert(l3, gtsam.Point3( 0,-.5, 5))
|
||||
|
||||
## optimize
|
||||
optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initialEstimate)
|
||||
result = optimizer.optimize()
|
||||
|
||||
## check equality for the first pose and point
|
||||
pose_x1 = result.atPose3(x1)
|
||||
self.assertTrue(pose_x1.equals(first_pose,1e-4))
|
||||
|
||||
point_l1 = result.atPoint3(l1)
|
||||
self.assertTrue(point_l1.equals(expected_l1,1e-4))
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
|
@ -0,0 +1,69 @@
|
|||
import unittest
|
||||
import numpy as np
|
||||
|
||||
from gtsam import Point2, Point3, Unit3, Rot2, Pose2, Rot3, Pose3
|
||||
from gtsam import Values, Cal3_S2, Cal3DS2, Cal3Bundler, EssentialMatrix, imuBias_ConstantBias
|
||||
|
||||
|
||||
class TestValues(unittest.TestCase):
|
||||
|
||||
def test_values(self):
|
||||
values = Values()
|
||||
E = EssentialMatrix(Rot3(), Unit3())
|
||||
tol = 1e-9
|
||||
|
||||
values.insert(0, Point2(0,0))
|
||||
values.insert(1, Point3(0,0,0))
|
||||
values.insert(2, Rot2())
|
||||
values.insert(3, Pose2())
|
||||
values.insert(4, Rot3())
|
||||
values.insert(5, Pose3())
|
||||
values.insert(6, Cal3_S2())
|
||||
values.insert(7, Cal3DS2())
|
||||
values.insert(8, Cal3Bundler())
|
||||
values.insert(9, E)
|
||||
values.insert(10, imuBias_ConstantBias())
|
||||
|
||||
# Special cases for Vectors and Matrices
|
||||
# Note that gtsam's Eigen Vectors and Matrices requires double-precision
|
||||
# floating point numbers in column-major (Fortran style) storage order,
|
||||
# whereas by default, numpy.array is in row-major order and the type is
|
||||
# in whatever the number input type is, e.g. np.array([1,2,3])
|
||||
# will have 'int' type.
|
||||
#
|
||||
# The wrapper will automatically fix the type and storage order for you,
|
||||
# but for performance reasons, it's recommended to specify the correct
|
||||
# type and storage order.
|
||||
vec = np.array([1., 2., 3.]) # for vectors, the order is not important, but dtype still is
|
||||
values.insert(11, vec)
|
||||
mat = np.array([[1., 2.], [3., 4.]], order='F')
|
||||
values.insert(12, mat)
|
||||
# Test with dtype int and the default order='C'
|
||||
# This still works as the wrapper converts to the correct type and order for you
|
||||
# but is nornally not recommended!
|
||||
mat2 = np.array([[1,2,],[3,5]])
|
||||
values.insert(13, mat2)
|
||||
|
||||
self.assertTrue(values.atPoint2(0).equals(Point2(), tol))
|
||||
self.assertTrue(values.atPoint3(1).equals(Point3(), tol))
|
||||
self.assertTrue(values.atRot2(2).equals(Rot2(), tol))
|
||||
self.assertTrue(values.atPose2(3).equals(Pose2(), tol))
|
||||
self.assertTrue(values.atRot3(4).equals(Rot3(), tol))
|
||||
self.assertTrue(values.atPose3(5).equals(Pose3(), tol))
|
||||
self.assertTrue(values.atCal3_S2(6).equals(Cal3_S2(), tol))
|
||||
self.assertTrue(values.atCal3DS2(7).equals(Cal3DS2(), tol))
|
||||
self.assertTrue(values.atCal3Bundler(8).equals(Cal3Bundler(), tol))
|
||||
self.assertTrue(values.atEssentialMatrix(9).equals(E, tol))
|
||||
self.assertTrue(values.atimuBias_ConstantBias(
|
||||
10).equals(imuBias_ConstantBias(), tol))
|
||||
|
||||
# special cases for Vector and Matrix:
|
||||
actualVector = values.atVector(11)
|
||||
self.assertTrue(np.allclose(vec, actualVector, tol))
|
||||
actualMatrix = values.atMatrix(12)
|
||||
self.assertTrue(np.allclose(mat, actualMatrix, tol))
|
||||
actualMatrix2 = values.atMatrix(13)
|
||||
self.assertTrue(np.allclose(mat2, actualMatrix2, tol))
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
|
@ -0,0 +1,42 @@
|
|||
import unittest
|
||||
import numpy as np
|
||||
from gtsam import symbol
|
||||
import gtsam.utils.visual_data_generator as generator
|
||||
import gtsam.utils.visual_isam as visual_isam
|
||||
|
||||
class TestVisualISAMExample(unittest.TestCase):
|
||||
|
||||
def test_VisualISAMExample(self):
|
||||
# Data Options
|
||||
options = generator.Options()
|
||||
options.triangle = False
|
||||
options.nrCameras = 20
|
||||
|
||||
# iSAM Options
|
||||
isamOptions = visual_isam.Options()
|
||||
isamOptions.hardConstraint = False
|
||||
isamOptions.pointPriors = False
|
||||
isamOptions.batchInitialization = True
|
||||
isamOptions.reorderInterval = 10
|
||||
isamOptions.alwaysRelinearize = False
|
||||
|
||||
# Generate data
|
||||
data, truth = generator.generate_data(options)
|
||||
|
||||
# Initialize iSAM with the first pose and points
|
||||
isam, result, nextPose = visual_isam.initialize(data, truth, isamOptions)
|
||||
|
||||
# Main loop for iSAM: stepping through all poses
|
||||
for currentPose in range(nextPose, options.nrCameras):
|
||||
isam, result = visual_isam.step(data, isam, result, truth, currentPose)
|
||||
|
||||
for i in range(len(truth.cameras)):
|
||||
pose_i = result.atPose3(symbol(ord('x'), i))
|
||||
self.assertTrue(pose_i.equals(truth.cameras[i].pose(), 1e-5))
|
||||
|
||||
for j in range(len(truth.points)):
|
||||
point_j = result.atPoint3(symbol(ord('l'), j))
|
||||
self.assertTrue(point_j.equals(truth.points[j], 1e-5))
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
|
@ -0,0 +1,38 @@
|
|||
import gtsam
|
||||
import numpy as np
|
||||
from math import pi, cos, sin
|
||||
|
||||
|
||||
def circlePose3(numPoses=8, radius=1.0, symbolChar=0):
|
||||
"""
|
||||
circlePose3 generates a set of poses in a circle. This function
|
||||
returns those poses inside a gtsam.Values object, with sequential
|
||||
keys starting from 0. An optional character may be provided, which
|
||||
will be stored in the msb of each key (i.e. gtsam.Symbol).
|
||||
|
||||
We use aerospace/navlab convention, X forward, Y right, Z down
|
||||
First pose will be at (R,0,0)
|
||||
^y ^ X
|
||||
| |
|
||||
z-->xZ--> Y (z pointing towards viewer, Z pointing away from viewer)
|
||||
Vehicle at p0 is looking towards y axis (X-axis points towards world y)
|
||||
"""
|
||||
|
||||
# Force symbolChar to be a single character
|
||||
if type(symbolChar) is str:
|
||||
symbolChar = ord(symbolChar[0])
|
||||
|
||||
values = gtsam.Values()
|
||||
theta = 0.0
|
||||
dtheta = 2 * pi / numPoses
|
||||
gRo = gtsam.Rot3(
|
||||
np.array([[0., 1., 0.], [1., 0., 0.], [0., 0., -1.]], order='F'))
|
||||
for i in range(numPoses):
|
||||
key = gtsam.symbol(symbolChar, i)
|
||||
gti = gtsam.Point3(radius * cos(theta), radius * sin(theta), 0)
|
||||
oRi = gtsam.Rot3.Yaw(
|
||||
-theta) # negative yaw goes counterclockwise, with Z down !
|
||||
gTi = gtsam.Pose3(gRo.compose(oRi), gti)
|
||||
values.insert(key, gTi)
|
||||
theta = theta + dtheta
|
||||
return values
|
|
@ -0,0 +1,102 @@
|
|||
"""Various plotting utlities."""
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
def plot_pose2_on_axes(axes, pose, axis_length=0.1):
|
||||
"""Plot a 2D pose on given axis 'axes' with given 'axis_length'."""
|
||||
# get rotation and translation (center)
|
||||
gRp = pose.rotation().matrix() # rotation from pose to global
|
||||
t = pose.translation()
|
||||
origin = np.array([t.x(), t.y()])
|
||||
|
||||
# draw the camera axes
|
||||
x_axis = origin + gRp[:, 0] * axis_length
|
||||
line = np.append(origin[np.newaxis], x_axis[np.newaxis], axis=0)
|
||||
axes.plot(line[:, 0], line[:, 1], 'r-')
|
||||
|
||||
y_axis = origin + gRp[:, 1] * axis_length
|
||||
line = np.append(origin[np.newaxis], y_axis[np.newaxis], axis=0)
|
||||
axes.plot(line[:, 0], line[:, 1], 'g-')
|
||||
|
||||
|
||||
def plot_pose2(fignum, pose, axis_length=0.1):
|
||||
"""Plot a 2D pose on given figure with given 'axis_length'."""
|
||||
# get figure object
|
||||
fig = plt.figure(fignum)
|
||||
axes = fig.gca()
|
||||
plot_pose2_on_axes(axes, pose, axis_length)
|
||||
|
||||
|
||||
def plot_point3_on_axes(axes, point, linespec):
|
||||
"""Plot a 3D point on given axis 'axes' with given 'linespec'."""
|
||||
axes.plot([point.x()], [point.y()], [point.z()], linespec)
|
||||
|
||||
|
||||
def plot_point3(fignum, point, linespec):
|
||||
"""Plot a 3D point on given figure with given 'linespec'."""
|
||||
fig = plt.figure(fignum)
|
||||
axes = fig.gca(projection='3d')
|
||||
plot_point3_on_axes(axes, point, linespec)
|
||||
|
||||
|
||||
def plot_3d_points(fignum, values, linespec, marginals=None):
|
||||
"""
|
||||
Plots the Point3s in 'values', with optional covariances.
|
||||
Finds all the Point3 objects in the given Values object and plots them.
|
||||
If a Marginals object is given, this function will also plot marginal
|
||||
covariance ellipses for each point.
|
||||
"""
|
||||
|
||||
keys = values.keys()
|
||||
|
||||
# Plot points and covariance matrices
|
||||
for i in range(keys.size()):
|
||||
try:
|
||||
p = values.atPoint3(keys.at(i))
|
||||
# if haveMarginals
|
||||
# P = marginals.marginalCovariance(key);
|
||||
# gtsam.plot_point3(p, linespec, P);
|
||||
# else
|
||||
plot_point3(fignum, p, linespec)
|
||||
except RuntimeError:
|
||||
continue
|
||||
# I guess it's not a Point3
|
||||
|
||||
|
||||
def plot_pose3_on_axes(axes, pose, axis_length=0.1):
|
||||
"""Plot a 3D pose on given axis 'axes' with given 'axis_length'."""
|
||||
# get rotation and translation (center)
|
||||
gRp = pose.rotation().matrix() # rotation from pose to global
|
||||
t = pose.translation()
|
||||
origin = np.array([t.x(), t.y(), t.z()])
|
||||
|
||||
# draw the camera axes
|
||||
x_axis = origin + gRp[:, 0] * axis_length
|
||||
line = np.append(origin[np.newaxis], x_axis[np.newaxis], axis=0)
|
||||
axes.plot(line[:, 0], line[:, 1], line[:, 2], 'r-')
|
||||
|
||||
y_axis = origin + gRp[:, 1] * axis_length
|
||||
line = np.append(origin[np.newaxis], y_axis[np.newaxis], axis=0)
|
||||
axes.plot(line[:, 0], line[:, 1], line[:, 2], 'g-')
|
||||
|
||||
z_axis = origin + gRp[:, 2] * axis_length
|
||||
line = np.append(origin[np.newaxis], z_axis[np.newaxis], axis=0)
|
||||
axes.plot(line[:, 0], line[:, 1], line[:, 2], 'b-')
|
||||
|
||||
# plot the covariance
|
||||
# TODO (dellaert): make this work
|
||||
# if (nargin>2) && (~isempty(P))
|
||||
# pPp = P(4:6,4:6); % covariance matrix in pose coordinate frame
|
||||
# gPp = gRp*pPp*gRp'; % convert the covariance matrix to global coordinate frame
|
||||
# gtsam.covarianceEllipse3D(origin,gPp);
|
||||
# end
|
||||
|
||||
|
||||
def plot_pose3(fignum, pose, axis_length=0.1):
|
||||
"""Plot a 3D pose on given figure with given 'axis_length'."""
|
||||
# get figure object
|
||||
fig = plt.figure(fignum)
|
||||
axes = fig.gca(projection='3d')
|
||||
plot_pose3_on_axes(axes, pose, axis_length)
|
|
@ -0,0 +1,117 @@
|
|||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
from math import pi, cos, sin
|
||||
import gtsam
|
||||
|
||||
|
||||
class Options:
|
||||
"""
|
||||
Options to generate test scenario
|
||||
"""
|
||||
|
||||
def __init__(self, triangle=False, nrCameras=3, K=gtsam.Cal3_S2()):
|
||||
"""
|
||||
Options to generate test scenario
|
||||
@param triangle: generate a triangle scene with 3 points if True, otherwise
|
||||
a cube with 8 points
|
||||
@param nrCameras: number of cameras to generate
|
||||
@param K: camera calibration object
|
||||
"""
|
||||
self.triangle = triangle
|
||||
self.nrCameras = nrCameras
|
||||
|
||||
|
||||
class GroundTruth:
|
||||
"""
|
||||
Object holding generated ground-truth data
|
||||
"""
|
||||
|
||||
def __init__(self, K=gtsam.Cal3_S2(), nrCameras=3, nrPoints=4):
|
||||
self.K = K
|
||||
self.cameras = [gtsam.Pose3()] * nrCameras
|
||||
self.points = [gtsam.Point3()] * nrPoints
|
||||
|
||||
def print_(self, s=""):
|
||||
print(s)
|
||||
print("K = ", self.K)
|
||||
print("Cameras: ", len(self.cameras))
|
||||
for camera in self.cameras:
|
||||
print("\t", camera)
|
||||
print("Points: ", len(self.points))
|
||||
for point in self.points:
|
||||
print("\t", point)
|
||||
pass
|
||||
|
||||
|
||||
class Data:
|
||||
"""
|
||||
Object holding generated measurement data
|
||||
"""
|
||||
|
||||
class NoiseModels:
|
||||
pass
|
||||
|
||||
def __init__(self, K=gtsam.Cal3_S2(), nrCameras=3, nrPoints=4):
|
||||
self.K = K
|
||||
self.Z = [x[:] for x in [[gtsam.Point2()] * nrPoints] * nrCameras]
|
||||
self.J = [x[:] for x in [[0] * nrPoints] * nrCameras]
|
||||
self.odometry = [gtsam.Pose3()] * nrCameras
|
||||
|
||||
# Set Noise parameters
|
||||
self.noiseModels = Data.NoiseModels()
|
||||
self.noiseModels.posePrior = gtsam.noiseModel_Diagonal.Sigmas(
|
||||
np.array([0.001, 0.001, 0.001, 0.1, 0.1, 0.1]))
|
||||
# noiseModels.odometry = gtsam.noiseModel_Diagonal.Sigmas(
|
||||
# np.array([0.001,0.001,0.001,0.1,0.1,0.1]))
|
||||
self.noiseModels.odometry = gtsam.noiseModel_Diagonal.Sigmas(
|
||||
np.array([0.05, 0.05, 0.05, 0.2, 0.2, 0.2]))
|
||||
self.noiseModels.pointPrior = gtsam.noiseModel_Isotropic.Sigma(3, 0.1)
|
||||
self.noiseModels.measurement = gtsam.noiseModel_Isotropic.Sigma(2, 1.0)
|
||||
|
||||
|
||||
def generate_data(options):
|
||||
""" Generate ground-truth and measurement data. """
|
||||
|
||||
K = gtsam.Cal3_S2(500, 500, 0, 640. / 2., 480. / 2.)
|
||||
nrPoints = 3 if options.triangle else 8
|
||||
|
||||
truth = GroundTruth(K=K, nrCameras=options.nrCameras, nrPoints=nrPoints)
|
||||
data = Data(K, nrCameras=options.nrCameras, nrPoints=nrPoints)
|
||||
|
||||
# Generate simulated data
|
||||
if options.triangle: # Create a triangle target, just 3 points on a plane
|
||||
r = 10
|
||||
for j in range(len(truth.points)):
|
||||
theta = j * 2 * pi / nrPoints
|
||||
truth.points[j] = gtsam.Point3(r * cos(theta), r * sin(theta), 0)
|
||||
else: # 3D landmarks as vertices of a cube
|
||||
truth.points = [
|
||||
gtsam.Point3(10, 10, 10), gtsam.Point3(-10, 10, 10),
|
||||
gtsam.Point3(-10, -10, 10), gtsam.Point3(10, -10, 10),
|
||||
gtsam.Point3(10, 10, -10), gtsam.Point3(-10, 10, -10),
|
||||
gtsam.Point3(-10, -10, -10), gtsam.Point3(10, -10, -10)
|
||||
]
|
||||
|
||||
# Create camera cameras on a circle around the triangle
|
||||
height = 10
|
||||
r = 40
|
||||
for i in range(options.nrCameras):
|
||||
theta = i * 2 * pi / options.nrCameras
|
||||
t = gtsam.Point3(r * cos(theta), r * sin(theta), height)
|
||||
truth.cameras[i] = gtsam.SimpleCamera.Lookat(t,
|
||||
gtsam.Point3(),
|
||||
gtsam.Point3(0, 0, 1),
|
||||
truth.K)
|
||||
# Create measurements
|
||||
for j in range(nrPoints):
|
||||
# All landmarks seen in every frame
|
||||
data.Z[i][j] = truth.cameras[i].project(truth.points[j])
|
||||
data.J[i][j] = j
|
||||
|
||||
# Calculate odometry between cameras
|
||||
for i in range(1, options.nrCameras):
|
||||
data.odometry[i] = truth.cameras[i - 1].pose().between(
|
||||
truth.cameras[i].pose())
|
||||
|
||||
return data, truth
|
|
@ -0,0 +1,131 @@
|
|||
import gtsam
|
||||
from gtsam import symbol
|
||||
|
||||
|
||||
class Options:
|
||||
""" Options for visual isam example. """
|
||||
|
||||
def __init__(self):
|
||||
self.hardConstraint = False
|
||||
self.pointPriors = False
|
||||
self.batchInitialization = True
|
||||
self.reorderInterval = 10
|
||||
self.alwaysRelinearize = False
|
||||
|
||||
|
||||
def initialize(data, truth, options):
|
||||
# Initialize iSAM
|
||||
params = gtsam.ISAM2Params()
|
||||
if options.alwaysRelinearize:
|
||||
params.setRelinearizeSkip(1)
|
||||
isam = gtsam.ISAM2(params=params)
|
||||
|
||||
# Add constraints/priors
|
||||
# TODO: should not be from ground truth!
|
||||
newFactors = gtsam.NonlinearFactorGraph()
|
||||
initialEstimates = gtsam.Values()
|
||||
for i in range(2):
|
||||
ii = symbol(ord('x'), i)
|
||||
if i == 0:
|
||||
if options.hardConstraint: # add hard constraint
|
||||
newFactors.add(
|
||||
gtsam.NonlinearEqualityPose3(ii, truth.cameras[0].pose()))
|
||||
else:
|
||||
newFactors.add(
|
||||
gtsam.PriorFactorPose3(ii, truth.cameras[i].pose(),
|
||||
data.noiseModels.posePrior))
|
||||
initialEstimates.insert(ii, truth.cameras[i].pose())
|
||||
|
||||
nextPoseIndex = 2
|
||||
|
||||
# Add visual measurement factors from two first poses and initialize
|
||||
# observed landmarks
|
||||
for i in range(2):
|
||||
ii = symbol(ord('x'), i)
|
||||
for k in range(len(data.Z[i])):
|
||||
j = data.J[i][k]
|
||||
jj = symbol(ord('l'), j)
|
||||
newFactors.add(
|
||||
gtsam.GenericProjectionFactorCal3_S2(data.Z[i][
|
||||
k], data.noiseModels.measurement, ii, jj, data.K))
|
||||
# TODO: initial estimates should not be from ground truth!
|
||||
if not initialEstimates.exists(jj):
|
||||
initialEstimates.insert(jj, truth.points[j])
|
||||
if options.pointPriors: # add point priors
|
||||
newFactors.add(
|
||||
gtsam.PriorFactorPoint3(jj, truth.points[j],
|
||||
data.noiseModels.pointPrior))
|
||||
|
||||
# Add odometry between frames 0 and 1
|
||||
newFactors.add(
|
||||
gtsam.BetweenFactorPose3(
|
||||
symbol(ord('x'), 0),
|
||||
symbol(ord('x'), 1), data.odometry[1], data.noiseModels.odometry))
|
||||
|
||||
# Update ISAM
|
||||
if options.batchInitialization: # Do a full optimize for first two poses
|
||||
batchOptimizer = gtsam.LevenbergMarquardtOptimizer(newFactors,
|
||||
initialEstimates)
|
||||
fullyOptimized = batchOptimizer.optimize()
|
||||
isam.update(newFactors, fullyOptimized)
|
||||
else:
|
||||
isam.update(newFactors, initialEstimates)
|
||||
|
||||
# figure(1)tic
|
||||
# t=toc plot(frame_i,t,'r.') tic
|
||||
result = isam.calculateEstimate()
|
||||
# t=toc plot(frame_i,t,'g.')
|
||||
|
||||
return isam, result, nextPoseIndex
|
||||
|
||||
|
||||
def step(data, isam, result, truth, currPoseIndex):
|
||||
'''
|
||||
Do one step isam update
|
||||
@param[in] data: measurement data (odometry and visual measurements and their noiseModels)
|
||||
@param[in/out] isam: current isam object, will be updated
|
||||
@param[in/out] result: current result object, will be updated
|
||||
@param[in] truth: ground truth data, used to initialize new variables
|
||||
@param[currPoseIndex]: index of the current pose
|
||||
'''
|
||||
# iSAM expects us to give it a new set of factors
|
||||
# along with initial estimates for any new variables introduced.
|
||||
newFactors = gtsam.NonlinearFactorGraph()
|
||||
initialEstimates = gtsam.Values()
|
||||
|
||||
# Add odometry
|
||||
prevPoseIndex = currPoseIndex - 1
|
||||
odometry = data.odometry[prevPoseIndex]
|
||||
newFactors.add(
|
||||
gtsam.BetweenFactorPose3(
|
||||
symbol(ord('x'), prevPoseIndex),
|
||||
symbol(ord('x'), currPoseIndex), odometry,
|
||||
data.noiseModels.odometry))
|
||||
|
||||
# Add visual measurement factors and initializations as necessary
|
||||
for k in range(len(data.Z[currPoseIndex])):
|
||||
zij = data.Z[currPoseIndex][k]
|
||||
j = data.J[currPoseIndex][k]
|
||||
jj = symbol(ord('l'), j)
|
||||
newFactors.add(
|
||||
gtsam.GenericProjectionFactorCal3_S2(
|
||||
zij, data.noiseModels.measurement,
|
||||
symbol(ord('x'), currPoseIndex), jj, data.K))
|
||||
# TODO: initialize with something other than truth
|
||||
if not result.exists(jj) and not initialEstimates.exists(jj):
|
||||
lmInit = truth.points[j]
|
||||
initialEstimates.insert(jj, lmInit)
|
||||
|
||||
# Initial estimates for the new pose.
|
||||
prevPose = result.atPose3(symbol(ord('x'), prevPoseIndex))
|
||||
initialEstimates.insert(
|
||||
symbol(ord('x'), currPoseIndex), prevPose.compose(odometry))
|
||||
|
||||
# Update ISAM
|
||||
# figure(1)tic
|
||||
isam.update(newFactors, initialEstimates)
|
||||
# t=toc plot(frame_i,t,'r.') tic
|
||||
newResult = isam.calculateEstimate()
|
||||
# t=toc plot(frame_i,t,'g.')
|
||||
|
||||
return isam, newResult
|
|
@ -0,0 +1,38 @@
|
|||
include(GtsamCythonWrap)
|
||||
|
||||
# Copy eigency's sources to the build folder
|
||||
# so that the cython-generated header "conversions_api.h" can be found when cythonizing eigency's core
|
||||
# and eigency's cython pxd headers can be found when cythonizing gtsam
|
||||
file(COPY "." DESTINATION ".")
|
||||
set(OUTPUT_DIR "${PROJECT_BINARY_DIR}/cython/gtsam_eigency")
|
||||
set(EIGENCY_INCLUDE_DIR ${OUTPUT_DIR})
|
||||
|
||||
# This is to make the build/cython/gtsam_eigency folder a python package
|
||||
configure_file(__init__.py.in ${PROJECT_BINARY_DIR}/cython/gtsam_eigency/__init__.py)
|
||||
|
||||
# include eigency headers
|
||||
include_directories(${EIGENCY_INCLUDE_DIR})
|
||||
|
||||
# Cythonize and build eigency
|
||||
message(STATUS "Cythonize and build eigency")
|
||||
# Important trick: use "../gtsam_eigency/conversions.pyx" to let cython know that the conversions module is
|
||||
# a part of the gtsam_eigency package and generate the function call import_gtsam_igency__conversions()
|
||||
# in conversions_api.h correctly!!!
|
||||
cythonize(cythonize_eigency_conversions "../gtsam_eigency/conversions.pyx" "conversions"
|
||||
"${OUTPUT_DIR}" "${EIGENCY_INCLUDE_DIR}" "" "" "")
|
||||
cythonize(cythonize_eigency_core "../gtsam_eigency/core.pyx" "core"
|
||||
${OUTPUT_DIR} "${EIGENCY_INCLUDE_DIR}" "" "" "")
|
||||
add_dependencies(cythonize_eigency_core cythonize_eigency_conversions)
|
||||
add_custom_target(cythonize_eigency)
|
||||
add_dependencies(cythonize_eigency cythonize_eigency_conversions cythonize_eigency_core)
|
||||
|
||||
# install
|
||||
install(DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
|
||||
DESTINATION ${GTSAM_CYTHON_INSTALL_PATH}
|
||||
PATTERN "CMakeLists.txt" EXCLUDE
|
||||
PATTERN "__init__.py.in" EXCLUDE)
|
||||
install(TARGETS cythonize_eigency_core cythonize_eigency_conversions
|
||||
DESTINATION "${GTSAM_CYTHON_INSTALL_PATH}/gtsam_eigency")
|
||||
install(FILES ${OUTPUT_DIR}/conversions_api.h DESTINATION ${GTSAM_CYTHON_INSTALL_PATH}/gtsam_eigency)
|
||||
configure_file(__init__.py.in ${OUTPUT_DIR}/__init__.py)
|
||||
install(FILES ${OUTPUT_DIR}/__init__.py DESTINATION ${GTSAM_CYTHON_INSTALL_PATH}/gtsam_eigency)
|
|
@ -0,0 +1,20 @@
|
|||
Copyright (c) 2016 Wouter Boomsma
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining
|
||||
a copy of this software and associated documentation files (the
|
||||
"Software"), to deal in the Software without restriction, including
|
||||
without limitation the rights to use, copy, modify, merge, publish,
|
||||
distribute, sublicense, and/or sell copies of the Software, and to
|
||||
permit persons to whom the Software is furnished to do so, subject to
|
||||
the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be
|
||||
included in all copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||||
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
||||
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
||||
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
||||
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
@ -0,0 +1,13 @@
|
|||
import os
|
||||
import numpy as np
|
||||
|
||||
__eigen_dir__ = "${GTSAM_EIGEN_INCLUDE_PREFIX}"
|
||||
|
||||
def get_includes(include_eigen=True):
|
||||
root = os.path.dirname(__file__)
|
||||
parent = os.path.join(root, "..")
|
||||
path = [root, parent, np.get_include()]
|
||||
if include_eigen:
|
||||
path.append(os.path.join(root, __eigen_dir__))
|
||||
return path
|
||||
|
|
@ -0,0 +1,62 @@
|
|||
cimport numpy as np
|
||||
|
||||
cdef api np.ndarray[double, ndim=2] ndarray_double_C(double *data, long rows, long cols, long outer_stride, long inner_stride)
|
||||
cdef api np.ndarray[double, ndim=2] ndarray_double_F(double *data, long rows, long cols, long outer_stride, long inner_stride)
|
||||
cdef api np.ndarray[double, ndim=2] ndarray_copy_double_C(const double *data, long rows, long cols, long outer_stride, long inner_stride)
|
||||
cdef api np.ndarray[double, ndim=2] ndarray_copy_double_F(const double *data, long rows, long cols, long outer_stride, long inner_stride)
|
||||
|
||||
cdef api np.ndarray[float, ndim=2] ndarray_float_C(float *data, long rows, long cols, long outer_stride, long inner_stride)
|
||||
cdef api np.ndarray[float, ndim=2] ndarray_float_F(float *data, long rows, long cols, long outer_stride, long inner_stride)
|
||||
cdef api np.ndarray[float, ndim=2] ndarray_copy_float_C(const float *data, long rows, long cols, long outer_stride, long inner_stride)
|
||||
cdef api np.ndarray[float, ndim=2] ndarray_copy_float_F(const float *data, long rows, long cols, long outer_stride, long inner_stride)
|
||||
|
||||
cdef api np.ndarray[long, ndim=2] ndarray_long_C(long *data, long rows, long cols, long outer_stride, long inner_stride)
|
||||
cdef api np.ndarray[long, ndim=2] ndarray_long_F(long *data, long rows, long cols, long outer_stride, long inner_stride)
|
||||
cdef api np.ndarray[long, ndim=2] ndarray_copy_long_C(const long *data, long rows, long cols, long outer_stride, long inner_stride)
|
||||
cdef api np.ndarray[long, ndim=2] ndarray_copy_long_F(const long *data, long rows, long cols, long outer_stride, long inner_stride)
|
||||
|
||||
cdef api np.ndarray[unsigned long, ndim=2] ndarray_ulong_C(unsigned long *data, long rows, long cols, long outer_stride, long inner_stride)
|
||||
cdef api np.ndarray[unsigned long, ndim=2] ndarray_ulong_F(unsigned long *data, long rows, long cols, long outer_stride, long inner_stride)
|
||||
cdef api np.ndarray[unsigned long, ndim=2] ndarray_copy_ulong_C(const unsigned long *data, long rows, long cols, long outer_stride, long inner_stride)
|
||||
cdef api np.ndarray[unsigned long, ndim=2] ndarray_copy_ulong_F(const unsigned long *data, long rows, long cols, long outer_stride, long inner_stride)
|
||||
|
||||
cdef api np.ndarray[int, ndim=2] ndarray_int_C(int *data, long rows, long cols, long outer_stride, long inner_stride)
|
||||
cdef api np.ndarray[int, ndim=2] ndarray_int_F(int *data, long rows, long cols, long outer_stride, long inner_stride)
|
||||
cdef api np.ndarray[int, ndim=2] ndarray_copy_int_C(const int *data, long rows, long cols, long outer_stride, long inner_stride)
|
||||
cdef api np.ndarray[int, ndim=2] ndarray_copy_int_F(const int *data, long rows, long cols, long outer_stride, long inner_stride)
|
||||
|
||||
cdef api np.ndarray[unsigned int, ndim=2] ndarray_uint_C(unsigned int *data, long rows, long cols, long outer_stride, long inner_stride)
|
||||
cdef api np.ndarray[unsigned int, ndim=2] ndarray_uint_F(unsigned int *data, long rows, long cols, long outer_stride, long inner_stride)
|
||||
cdef api np.ndarray[unsigned int, ndim=2] ndarray_copy_uint_C(const unsigned int *data, long rows, long cols, long outer_stride, long inner_stride)
|
||||
cdef api np.ndarray[unsigned int, ndim=2] ndarray_copy_uint_F(const unsigned int *data, long rows, long cols, long outer_stride, long inner_stride)
|
||||
|
||||
cdef api np.ndarray[short, ndim=2] ndarray_short_C(short *data, long rows, long cols, long outer_stride, long inner_stride)
|
||||
cdef api np.ndarray[short, ndim=2] ndarray_short_F(short *data, long rows, long cols, long outer_stride, long inner_stride)
|
||||
cdef api np.ndarray[short, ndim=2] ndarray_copy_short_C(const short *data, long rows, long cols, long outer_stride, long inner_stride)
|
||||
cdef api np.ndarray[short, ndim=2] ndarray_copy_short_F(const short *data, long rows, long cols, long outer_stride, long inner_stride)
|
||||
|
||||
cdef api np.ndarray[unsigned short, ndim=2] ndarray_ushort_C(unsigned short *data, long rows, long cols, long outer_stride, long inner_stride)
|
||||
cdef api np.ndarray[unsigned short, ndim=2] ndarray_ushort_F(unsigned short *data, long rows, long cols, long outer_stride, long inner_stride)
|
||||
cdef api np.ndarray[unsigned short, ndim=2] ndarray_copy_ushort_C(const unsigned short *data, long rows, long cols, long outer_stride, long inner_stride)
|
||||
cdef api np.ndarray[unsigned short, ndim=2] ndarray_copy_ushort_F(const unsigned short *data, long rows, long cols, long outer_stride, long inner_stride)
|
||||
|
||||
cdef api np.ndarray[signed char, ndim=2] ndarray_schar_C(signed char *data, long rows, long cols, long outer_stride, long inner_stride)
|
||||
cdef api np.ndarray[signed char, ndim=2] ndarray_schar_F(signed char *data, long rows, long cols, long outer_stride, long inner_stride)
|
||||
cdef api np.ndarray[signed char, ndim=2] ndarray_copy_schar_C(const signed char *data, long rows, long cols, long outer_stride, long inner_stride)
|
||||
cdef api np.ndarray[signed char, ndim=2] ndarray_copy_schar_F(const signed char *data, long rows, long cols, long outer_stride, long inner_stride)
|
||||
|
||||
cdef api np.ndarray[unsigned char, ndim=2] ndarray_uchar_C(unsigned char *data, long rows, long cols, long outer_stride, long inner_stride)
|
||||
cdef api np.ndarray[unsigned char, ndim=2] ndarray_uchar_F(unsigned char *data, long rows, long cols, long outer_stride, long inner_stride)
|
||||
cdef api np.ndarray[unsigned char, ndim=2] ndarray_copy_uchar_C(const unsigned char *data, long rows, long cols, long outer_stride, long inner_stride)
|
||||
cdef api np.ndarray[unsigned char, ndim=2] ndarray_copy_uchar_F(const unsigned char *data, long rows, long cols, long outer_stride, long inner_stride)
|
||||
|
||||
cdef api np.ndarray[np.complex128_t, ndim=2] ndarray_complex_double_C(np.complex128_t *data, long rows, long cols, long outer_stride, long inner_stride)
|
||||
cdef api np.ndarray[np.complex128_t, ndim=2] ndarray_complex_double_F(np.complex128_t *data, long rows, long cols, long outer_stride, long inner_stride)
|
||||
cdef api np.ndarray[np.complex128_t, ndim=2] ndarray_copy_complex_double_C(const np.complex128_t *data, long rows, long cols, long outer_stride, long inner_stride)
|
||||
cdef api np.ndarray[np.complex128_t, ndim=2] ndarray_copy_complex_double_F(const np.complex128_t *data, long rows, long cols, long outer_stride, long inner_stride)
|
||||
|
||||
cdef api np.ndarray[np.complex64_t, ndim=2] ndarray_complex_float_C(np.complex64_t *data, long rows, long cols, long outer_stride, long inner_stride)
|
||||
cdef api np.ndarray[np.complex64_t, ndim=2] ndarray_complex_float_F(np.complex64_t *data, long rows, long cols, long outer_stride, long inner_stride)
|
||||
cdef api np.ndarray[np.complex64_t, ndim=2] ndarray_copy_complex_float_C(const np.complex64_t *data, long rows, long cols, long outer_stride, long inner_stride)
|
||||
cdef api np.ndarray[np.complex64_t, ndim=2] ndarray_copy_complex_float_F(const np.complex64_t *data, long rows, long cols, long outer_stride, long inner_stride)
|
||||
|
|
@ -0,0 +1,327 @@
|
|||
cimport cython
|
||||
import numpy as np
|
||||
from numpy.lib.stride_tricks import as_strided
|
||||
|
||||
@cython.boundscheck(False)
|
||||
cdef np.ndarray[double, ndim=2] ndarray_double_C(double *data, long rows, long cols, long row_stride, long col_stride):
|
||||
cdef double[:,:] mem_view = <double[:rows,:cols]>data
|
||||
dtype = 'double'
|
||||
cdef int itemsize = np.dtype(dtype).itemsize
|
||||
return as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize])
|
||||
@cython.boundscheck(False)
|
||||
cdef np.ndarray[double, ndim=2] ndarray_double_F(double *data, long rows, long cols, long row_stride, long col_stride):
|
||||
cdef double[::1,:] mem_view = <double[:rows:1,:cols]>data
|
||||
dtype = 'double'
|
||||
cdef int itemsize = np.dtype(dtype).itemsize
|
||||
return as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize])
|
||||
|
||||
@cython.boundscheck(False)
|
||||
cdef np.ndarray[double, ndim=2] ndarray_copy_double_C(const double *data, long rows, long cols, long row_stride, long col_stride):
|
||||
cdef double[:,:] mem_view = <double[:rows,:cols]>data
|
||||
dtype = 'double'
|
||||
cdef int itemsize = np.dtype(dtype).itemsize
|
||||
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize]))
|
||||
@cython.boundscheck(False)
|
||||
cdef np.ndarray[double, ndim=2] ndarray_copy_double_F(const double *data, long rows, long cols, long row_stride, long col_stride):
|
||||
cdef double[::1,:] mem_view = <double[:rows:1,:cols]>data
|
||||
dtype = 'double'
|
||||
cdef int itemsize = np.dtype(dtype).itemsize
|
||||
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize]))
|
||||
|
||||
|
||||
@cython.boundscheck(False)
|
||||
cdef np.ndarray[float, ndim=2] ndarray_float_C(float *data, long rows, long cols, long row_stride, long col_stride):
|
||||
cdef float[:,:] mem_view = <float[:rows,:cols]>data
|
||||
dtype = 'float'
|
||||
cdef int itemsize = np.dtype(dtype).itemsize
|
||||
return as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize])
|
||||
@cython.boundscheck(False)
|
||||
cdef np.ndarray[float, ndim=2] ndarray_float_F(float *data, long rows, long cols, long row_stride, long col_stride):
|
||||
cdef float[::1,:] mem_view = <float[:rows:1,:cols]>data
|
||||
dtype = 'float'
|
||||
cdef int itemsize = np.dtype(dtype).itemsize
|
||||
return as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize])
|
||||
|
||||
@cython.boundscheck(False)
|
||||
cdef np.ndarray[float, ndim=2] ndarray_copy_float_C(const float *data, long rows, long cols, long row_stride, long col_stride):
|
||||
cdef float[:,:] mem_view = <float[:rows,:cols]>data
|
||||
dtype = 'float'
|
||||
cdef int itemsize = np.dtype(dtype).itemsize
|
||||
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize]))
|
||||
@cython.boundscheck(False)
|
||||
cdef np.ndarray[float, ndim=2] ndarray_copy_float_F(const float *data, long rows, long cols, long row_stride, long col_stride):
|
||||
cdef float[::1,:] mem_view = <float[:rows:1,:cols]>data
|
||||
dtype = 'float'
|
||||
cdef int itemsize = np.dtype(dtype).itemsize
|
||||
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize]))
|
||||
|
||||
|
||||
@cython.boundscheck(False)
|
||||
cdef np.ndarray[long, ndim=2] ndarray_long_C(long *data, long rows, long cols, long row_stride, long col_stride):
|
||||
cdef long[:,:] mem_view = <long[:rows,:cols]>data
|
||||
dtype = 'int_'
|
||||
cdef int itemsize = np.dtype(dtype).itemsize
|
||||
return as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize])
|
||||
@cython.boundscheck(False)
|
||||
cdef np.ndarray[long, ndim=2] ndarray_long_F(long *data, long rows, long cols, long row_stride, long col_stride):
|
||||
cdef long[::1,:] mem_view = <long[:rows:1,:cols]>data
|
||||
dtype = 'int_'
|
||||
cdef int itemsize = np.dtype(dtype).itemsize
|
||||
return as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize])
|
||||
|
||||
@cython.boundscheck(False)
|
||||
cdef np.ndarray[long, ndim=2] ndarray_copy_long_C(const long *data, long rows, long cols, long row_stride, long col_stride):
|
||||
cdef long[:,:] mem_view = <long[:rows,:cols]>data
|
||||
dtype = 'int_'
|
||||
cdef int itemsize = np.dtype(dtype).itemsize
|
||||
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize]))
|
||||
@cython.boundscheck(False)
|
||||
cdef np.ndarray[long, ndim=2] ndarray_copy_long_F(const long *data, long rows, long cols, long row_stride, long col_stride):
|
||||
cdef long[::1,:] mem_view = <long[:rows:1,:cols]>data
|
||||
dtype = 'int_'
|
||||
cdef int itemsize = np.dtype(dtype).itemsize
|
||||
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize]))
|
||||
|
||||
|
||||
@cython.boundscheck(False)
|
||||
cdef np.ndarray[unsigned long, ndim=2] ndarray_ulong_C(unsigned long *data, long rows, long cols, long row_stride, long col_stride):
|
||||
cdef unsigned long[:,:] mem_view = <unsigned long[:rows,:cols]>data
|
||||
dtype = 'uint'
|
||||
cdef int itemsize = np.dtype(dtype).itemsize
|
||||
return as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize])
|
||||
@cython.boundscheck(False)
|
||||
cdef np.ndarray[unsigned long, ndim=2] ndarray_ulong_F(unsigned long *data, long rows, long cols, long row_stride, long col_stride):
|
||||
cdef unsigned long[::1,:] mem_view = <unsigned long[:rows:1,:cols]>data
|
||||
dtype = 'uint'
|
||||
cdef int itemsize = np.dtype(dtype).itemsize
|
||||
return as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize])
|
||||
|
||||
@cython.boundscheck(False)
|
||||
cdef np.ndarray[unsigned long, ndim=2] ndarray_copy_ulong_C(const unsigned long *data, long rows, long cols, long row_stride, long col_stride):
|
||||
cdef unsigned long[:,:] mem_view = <unsigned long[:rows,:cols]>data
|
||||
dtype = 'uint'
|
||||
cdef int itemsize = np.dtype(dtype).itemsize
|
||||
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize]))
|
||||
@cython.boundscheck(False)
|
||||
cdef np.ndarray[unsigned long, ndim=2] ndarray_copy_ulong_F(const unsigned long *data, long rows, long cols, long row_stride, long col_stride):
|
||||
cdef unsigned long[::1,:] mem_view = <unsigned long[:rows:1,:cols]>data
|
||||
dtype = 'uint'
|
||||
cdef int itemsize = np.dtype(dtype).itemsize
|
||||
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize]))
|
||||
|
||||
|
||||
@cython.boundscheck(False)
|
||||
cdef np.ndarray[int, ndim=2] ndarray_int_C(int *data, long rows, long cols, long row_stride, long col_stride):
|
||||
cdef int[:,:] mem_view = <int[:rows,:cols]>data
|
||||
dtype = 'int'
|
||||
cdef int itemsize = np.dtype(dtype).itemsize
|
||||
return as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize])
|
||||
@cython.boundscheck(False)
|
||||
cdef np.ndarray[int, ndim=2] ndarray_int_F(int *data, long rows, long cols, long row_stride, long col_stride):
|
||||
cdef int[::1,:] mem_view = <int[:rows:1,:cols]>data
|
||||
dtype = 'int'
|
||||
cdef int itemsize = np.dtype(dtype).itemsize
|
||||
return as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize])
|
||||
|
||||
@cython.boundscheck(False)
|
||||
cdef np.ndarray[int, ndim=2] ndarray_copy_int_C(const int *data, long rows, long cols, long row_stride, long col_stride):
|
||||
cdef int[:,:] mem_view = <int[:rows,:cols]>data
|
||||
dtype = 'int'
|
||||
cdef int itemsize = np.dtype(dtype).itemsize
|
||||
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize]))
|
||||
@cython.boundscheck(False)
|
||||
cdef np.ndarray[int, ndim=2] ndarray_copy_int_F(const int *data, long rows, long cols, long row_stride, long col_stride):
|
||||
cdef int[::1,:] mem_view = <int[:rows:1,:cols]>data
|
||||
dtype = 'int'
|
||||
cdef int itemsize = np.dtype(dtype).itemsize
|
||||
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize]))
|
||||
|
||||
|
||||
@cython.boundscheck(False)
|
||||
cdef np.ndarray[unsigned int, ndim=2] ndarray_uint_C(unsigned int *data, long rows, long cols, long row_stride, long col_stride):
|
||||
cdef unsigned int[:,:] mem_view = <unsigned int[:rows,:cols]>data
|
||||
dtype = 'uint'
|
||||
cdef int itemsize = np.dtype(dtype).itemsize
|
||||
return as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize])
|
||||
@cython.boundscheck(False)
|
||||
cdef np.ndarray[unsigned int, ndim=2] ndarray_uint_F(unsigned int *data, long rows, long cols, long row_stride, long col_stride):
|
||||
cdef unsigned int[::1,:] mem_view = <unsigned int[:rows:1,:cols]>data
|
||||
dtype = 'uint'
|
||||
cdef int itemsize = np.dtype(dtype).itemsize
|
||||
return as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize])
|
||||
|
||||
@cython.boundscheck(False)
|
||||
cdef np.ndarray[unsigned int, ndim=2] ndarray_copy_uint_C(const unsigned int *data, long rows, long cols, long row_stride, long col_stride):
|
||||
cdef unsigned int[:,:] mem_view = <unsigned int[:rows,:cols]>data
|
||||
dtype = 'uint'
|
||||
cdef int itemsize = np.dtype(dtype).itemsize
|
||||
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize]))
|
||||
@cython.boundscheck(False)
|
||||
cdef np.ndarray[unsigned int, ndim=2] ndarray_copy_uint_F(const unsigned int *data, long rows, long cols, long row_stride, long col_stride):
|
||||
cdef unsigned int[::1,:] mem_view = <unsigned int[:rows:1,:cols]>data
|
||||
dtype = 'uint'
|
||||
cdef int itemsize = np.dtype(dtype).itemsize
|
||||
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize]))
|
||||
|
||||
|
||||
@cython.boundscheck(False)
|
||||
cdef np.ndarray[short, ndim=2] ndarray_short_C(short *data, long rows, long cols, long row_stride, long col_stride):
|
||||
cdef short[:,:] mem_view = <short[:rows,:cols]>data
|
||||
dtype = 'short'
|
||||
cdef int itemsize = np.dtype(dtype).itemsize
|
||||
return as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize])
|
||||
@cython.boundscheck(False)
|
||||
cdef np.ndarray[short, ndim=2] ndarray_short_F(short *data, long rows, long cols, long row_stride, long col_stride):
|
||||
cdef short[::1,:] mem_view = <short[:rows:1,:cols]>data
|
||||
dtype = 'short'
|
||||
cdef int itemsize = np.dtype(dtype).itemsize
|
||||
return as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize])
|
||||
|
||||
@cython.boundscheck(False)
|
||||
cdef np.ndarray[short, ndim=2] ndarray_copy_short_C(const short *data, long rows, long cols, long row_stride, long col_stride):
|
||||
cdef short[:,:] mem_view = <short[:rows,:cols]>data
|
||||
dtype = 'short'
|
||||
cdef int itemsize = np.dtype(dtype).itemsize
|
||||
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize]))
|
||||
@cython.boundscheck(False)
|
||||
cdef np.ndarray[short, ndim=2] ndarray_copy_short_F(const short *data, long rows, long cols, long row_stride, long col_stride):
|
||||
cdef short[::1,:] mem_view = <short[:rows:1,:cols]>data
|
||||
dtype = 'short'
|
||||
cdef int itemsize = np.dtype(dtype).itemsize
|
||||
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize]))
|
||||
|
||||
|
||||
@cython.boundscheck(False)
|
||||
cdef np.ndarray[unsigned short, ndim=2] ndarray_ushort_C(unsigned short *data, long rows, long cols, long row_stride, long col_stride):
|
||||
cdef unsigned short[:,:] mem_view = <unsigned short[:rows,:cols]>data
|
||||
dtype = 'ushort'
|
||||
cdef int itemsize = np.dtype(dtype).itemsize
|
||||
return as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize])
|
||||
@cython.boundscheck(False)
|
||||
cdef np.ndarray[unsigned short, ndim=2] ndarray_ushort_F(unsigned short *data, long rows, long cols, long row_stride, long col_stride):
|
||||
cdef unsigned short[::1,:] mem_view = <unsigned short[:rows:1,:cols]>data
|
||||
dtype = 'ushort'
|
||||
cdef int itemsize = np.dtype(dtype).itemsize
|
||||
return as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize])
|
||||
|
||||
@cython.boundscheck(False)
|
||||
cdef np.ndarray[unsigned short, ndim=2] ndarray_copy_ushort_C(const unsigned short *data, long rows, long cols, long row_stride, long col_stride):
|
||||
cdef unsigned short[:,:] mem_view = <unsigned short[:rows,:cols]>data
|
||||
dtype = 'ushort'
|
||||
cdef int itemsize = np.dtype(dtype).itemsize
|
||||
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize]))
|
||||
@cython.boundscheck(False)
|
||||
cdef np.ndarray[unsigned short, ndim=2] ndarray_copy_ushort_F(const unsigned short *data, long rows, long cols, long row_stride, long col_stride):
|
||||
cdef unsigned short[::1,:] mem_view = <unsigned short[:rows:1,:cols]>data
|
||||
dtype = 'ushort'
|
||||
cdef int itemsize = np.dtype(dtype).itemsize
|
||||
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize]))
|
||||
|
||||
|
||||
@cython.boundscheck(False)
|
||||
cdef np.ndarray[signed char, ndim=2] ndarray_schar_C(signed char *data, long rows, long cols, long row_stride, long col_stride):
|
||||
cdef signed char[:,:] mem_view = <signed char[:rows,:cols]>data
|
||||
dtype = 'int8'
|
||||
cdef int itemsize = np.dtype(dtype).itemsize
|
||||
return as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize])
|
||||
@cython.boundscheck(False)
|
||||
cdef np.ndarray[signed char, ndim=2] ndarray_schar_F(signed char *data, long rows, long cols, long row_stride, long col_stride):
|
||||
cdef signed char[::1,:] mem_view = <signed char[:rows:1,:cols]>data
|
||||
dtype = 'int8'
|
||||
cdef int itemsize = np.dtype(dtype).itemsize
|
||||
return as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize])
|
||||
|
||||
@cython.boundscheck(False)
|
||||
cdef np.ndarray[signed char, ndim=2] ndarray_copy_schar_C(const signed char *data, long rows, long cols, long row_stride, long col_stride):
|
||||
cdef signed char[:,:] mem_view = <signed char[:rows,:cols]>data
|
||||
dtype = 'int8'
|
||||
cdef int itemsize = np.dtype(dtype).itemsize
|
||||
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize]))
|
||||
@cython.boundscheck(False)
|
||||
cdef np.ndarray[signed char, ndim=2] ndarray_copy_schar_F(const signed char *data, long rows, long cols, long row_stride, long col_stride):
|
||||
cdef signed char[::1,:] mem_view = <signed char[:rows:1,:cols]>data
|
||||
dtype = 'int8'
|
||||
cdef int itemsize = np.dtype(dtype).itemsize
|
||||
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize]))
|
||||
|
||||
|
||||
@cython.boundscheck(False)
|
||||
cdef np.ndarray[unsigned char, ndim=2] ndarray_uchar_C(unsigned char *data, long rows, long cols, long row_stride, long col_stride):
|
||||
cdef unsigned char[:,:] mem_view = <unsigned char[:rows,:cols]>data
|
||||
dtype = 'uint8'
|
||||
cdef int itemsize = np.dtype(dtype).itemsize
|
||||
return as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize])
|
||||
@cython.boundscheck(False)
|
||||
cdef np.ndarray[unsigned char, ndim=2] ndarray_uchar_F(unsigned char *data, long rows, long cols, long row_stride, long col_stride):
|
||||
cdef unsigned char[::1,:] mem_view = <unsigned char[:rows:1,:cols]>data
|
||||
dtype = 'uint8'
|
||||
cdef int itemsize = np.dtype(dtype).itemsize
|
||||
return as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize])
|
||||
|
||||
@cython.boundscheck(False)
|
||||
cdef np.ndarray[unsigned char, ndim=2] ndarray_copy_uchar_C(const unsigned char *data, long rows, long cols, long row_stride, long col_stride):
|
||||
cdef unsigned char[:,:] mem_view = <unsigned char[:rows,:cols]>data
|
||||
dtype = 'uint8'
|
||||
cdef int itemsize = np.dtype(dtype).itemsize
|
||||
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize]))
|
||||
@cython.boundscheck(False)
|
||||
cdef np.ndarray[unsigned char, ndim=2] ndarray_copy_uchar_F(const unsigned char *data, long rows, long cols, long row_stride, long col_stride):
|
||||
cdef unsigned char[::1,:] mem_view = <unsigned char[:rows:1,:cols]>data
|
||||
dtype = 'uint8'
|
||||
cdef int itemsize = np.dtype(dtype).itemsize
|
||||
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize]))
|
||||
|
||||
|
||||
@cython.boundscheck(False)
|
||||
cdef np.ndarray[np.complex128_t, ndim=2] ndarray_complex_double_C(np.complex128_t *data, long rows, long cols, long row_stride, long col_stride):
|
||||
cdef np.complex128_t[:,:] mem_view = <np.complex128_t[:rows,:cols]>data
|
||||
dtype = 'complex128'
|
||||
cdef int itemsize = np.dtype(dtype).itemsize
|
||||
return as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize])
|
||||
@cython.boundscheck(False)
|
||||
cdef np.ndarray[np.complex128_t, ndim=2] ndarray_complex_double_F(np.complex128_t *data, long rows, long cols, long row_stride, long col_stride):
|
||||
cdef np.complex128_t[::1,:] mem_view = <np.complex128_t[:rows:1,:cols]>data
|
||||
dtype = 'complex128'
|
||||
cdef int itemsize = np.dtype(dtype).itemsize
|
||||
return as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize])
|
||||
|
||||
@cython.boundscheck(False)
|
||||
cdef np.ndarray[np.complex128_t, ndim=2] ndarray_copy_complex_double_C(const np.complex128_t *data, long rows, long cols, long row_stride, long col_stride):
|
||||
cdef np.complex128_t[:,:] mem_view = <np.complex128_t[:rows,:cols]>data
|
||||
dtype = 'complex128'
|
||||
cdef int itemsize = np.dtype(dtype).itemsize
|
||||
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize]))
|
||||
@cython.boundscheck(False)
|
||||
cdef np.ndarray[np.complex128_t, ndim=2] ndarray_copy_complex_double_F(const np.complex128_t *data, long rows, long cols, long row_stride, long col_stride):
|
||||
cdef np.complex128_t[::1,:] mem_view = <np.complex128_t[:rows:1,:cols]>data
|
||||
dtype = 'complex128'
|
||||
cdef int itemsize = np.dtype(dtype).itemsize
|
||||
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize]))
|
||||
|
||||
|
||||
@cython.boundscheck(False)
|
||||
cdef np.ndarray[np.complex64_t, ndim=2] ndarray_complex_float_C(np.complex64_t *data, long rows, long cols, long row_stride, long col_stride):
|
||||
cdef np.complex64_t[:,:] mem_view = <np.complex64_t[:rows,:cols]>data
|
||||
dtype = 'complex64'
|
||||
cdef int itemsize = np.dtype(dtype).itemsize
|
||||
return as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize])
|
||||
@cython.boundscheck(False)
|
||||
cdef np.ndarray[np.complex64_t, ndim=2] ndarray_complex_float_F(np.complex64_t *data, long rows, long cols, long row_stride, long col_stride):
|
||||
cdef np.complex64_t[::1,:] mem_view = <np.complex64_t[:rows:1,:cols]>data
|
||||
dtype = 'complex64'
|
||||
cdef int itemsize = np.dtype(dtype).itemsize
|
||||
return as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize])
|
||||
|
||||
@cython.boundscheck(False)
|
||||
cdef np.ndarray[np.complex64_t, ndim=2] ndarray_copy_complex_float_C(const np.complex64_t *data, long rows, long cols, long row_stride, long col_stride):
|
||||
cdef np.complex64_t[:,:] mem_view = <np.complex64_t[:rows,:cols]>data
|
||||
dtype = 'complex64'
|
||||
cdef int itemsize = np.dtype(dtype).itemsize
|
||||
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize]))
|
||||
@cython.boundscheck(False)
|
||||
cdef np.ndarray[np.complex64_t, ndim=2] ndarray_copy_complex_float_F(const np.complex64_t *data, long rows, long cols, long row_stride, long col_stride):
|
||||
cdef np.complex64_t[::1,:] mem_view = <np.complex64_t[:rows:1,:cols]>data
|
||||
dtype = 'complex64'
|
||||
cdef int itemsize = np.dtype(dtype).itemsize
|
||||
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize]))
|
||||
|
|
@ -0,0 +1,917 @@
|
|||
cimport cython
|
||||
cimport numpy as np
|
||||
|
||||
ctypedef signed char schar;
|
||||
ctypedef unsigned char uchar;
|
||||
|
||||
ctypedef fused dtype:
|
||||
uchar
|
||||
schar
|
||||
short
|
||||
int
|
||||
long
|
||||
float
|
||||
double
|
||||
|
||||
ctypedef fused DenseType:
|
||||
Matrix
|
||||
Array
|
||||
|
||||
ctypedef fused Rows:
|
||||
_1
|
||||
_2
|
||||
_3
|
||||
_4
|
||||
_5
|
||||
_6
|
||||
_7
|
||||
_8
|
||||
_9
|
||||
_10
|
||||
_11
|
||||
_12
|
||||
_13
|
||||
_14
|
||||
_15
|
||||
_16
|
||||
_17
|
||||
_18
|
||||
_19
|
||||
_20
|
||||
_21
|
||||
_22
|
||||
_23
|
||||
_24
|
||||
_25
|
||||
_26
|
||||
_27
|
||||
_28
|
||||
_29
|
||||
_30
|
||||
_31
|
||||
_32
|
||||
Dynamic
|
||||
|
||||
ctypedef Rows Cols
|
||||
ctypedef Rows StrideOuter
|
||||
ctypedef Rows StrideInner
|
||||
|
||||
ctypedef fused DenseTypeShort:
|
||||
Vector1i
|
||||
Vector2i
|
||||
Vector3i
|
||||
Vector4i
|
||||
VectorXi
|
||||
RowVector1i
|
||||
RowVector2i
|
||||
RowVector3i
|
||||
RowVector4i
|
||||
RowVectorXi
|
||||
Matrix1i
|
||||
Matrix2i
|
||||
Matrix3i
|
||||
Matrix4i
|
||||
MatrixXi
|
||||
Vector1f
|
||||
Vector2f
|
||||
Vector3f
|
||||
Vector4f
|
||||
VectorXf
|
||||
RowVector1f
|
||||
RowVector2f
|
||||
RowVector3f
|
||||
RowVector4f
|
||||
RowVectorXf
|
||||
Matrix1f
|
||||
Matrix2f
|
||||
Matrix3f
|
||||
Matrix4f
|
||||
MatrixXf
|
||||
Vector1d
|
||||
Vector2d
|
||||
Vector3d
|
||||
Vector4d
|
||||
VectorXd
|
||||
RowVector1d
|
||||
RowVector2d
|
||||
RowVector3d
|
||||
RowVector4d
|
||||
RowVectorXd
|
||||
Matrix1d
|
||||
Matrix2d
|
||||
Matrix3d
|
||||
Matrix4d
|
||||
MatrixXd
|
||||
Vector1cf
|
||||
Vector2cf
|
||||
Vector3cf
|
||||
Vector4cf
|
||||
VectorXcf
|
||||
RowVector1cf
|
||||
RowVector2cf
|
||||
RowVector3cf
|
||||
RowVector4cf
|
||||
RowVectorXcf
|
||||
Matrix1cf
|
||||
Matrix2cf
|
||||
Matrix3cf
|
||||
Matrix4cf
|
||||
MatrixXcf
|
||||
Vector1cd
|
||||
Vector2cd
|
||||
Vector3cd
|
||||
Vector4cd
|
||||
VectorXcd
|
||||
RowVector1cd
|
||||
RowVector2cd
|
||||
RowVector3cd
|
||||
RowVector4cd
|
||||
RowVectorXcd
|
||||
Matrix1cd
|
||||
Matrix2cd
|
||||
Matrix3cd
|
||||
Matrix4cd
|
||||
MatrixXcd
|
||||
Array22i
|
||||
Array23i
|
||||
Array24i
|
||||
Array2Xi
|
||||
Array32i
|
||||
Array33i
|
||||
Array34i
|
||||
Array3Xi
|
||||
Array42i
|
||||
Array43i
|
||||
Array44i
|
||||
Array4Xi
|
||||
ArrayX2i
|
||||
ArrayX3i
|
||||
ArrayX4i
|
||||
ArrayXXi
|
||||
Array2i
|
||||
Array3i
|
||||
Array4i
|
||||
ArrayXi
|
||||
Array22f
|
||||
Array23f
|
||||
Array24f
|
||||
Array2Xf
|
||||
Array32f
|
||||
Array33f
|
||||
Array34f
|
||||
Array3Xf
|
||||
Array42f
|
||||
Array43f
|
||||
Array44f
|
||||
Array4Xf
|
||||
ArrayX2f
|
||||
ArrayX3f
|
||||
ArrayX4f
|
||||
ArrayXXf
|
||||
Array2f
|
||||
Array3f
|
||||
Array4f
|
||||
ArrayXf
|
||||
Array22d
|
||||
Array23d
|
||||
Array24d
|
||||
Array2Xd
|
||||
Array32d
|
||||
Array33d
|
||||
Array34d
|
||||
Array3Xd
|
||||
Array42d
|
||||
Array43d
|
||||
Array44d
|
||||
Array4Xd
|
||||
ArrayX2d
|
||||
ArrayX3d
|
||||
ArrayX4d
|
||||
ArrayXXd
|
||||
Array2d
|
||||
Array3d
|
||||
Array4d
|
||||
ArrayXd
|
||||
Array22cf
|
||||
Array23cf
|
||||
Array24cf
|
||||
Array2Xcf
|
||||
Array32cf
|
||||
Array33cf
|
||||
Array34cf
|
||||
Array3Xcf
|
||||
Array42cf
|
||||
Array43cf
|
||||
Array44cf
|
||||
Array4Xcf
|
||||
ArrayX2cf
|
||||
ArrayX3cf
|
||||
ArrayX4cf
|
||||
ArrayXXcf
|
||||
Array2cf
|
||||
Array3cf
|
||||
Array4cf
|
||||
ArrayXcf
|
||||
Array22cd
|
||||
Array23cd
|
||||
Array24cd
|
||||
Array2Xcd
|
||||
Array32cd
|
||||
Array33cd
|
||||
Array34cd
|
||||
Array3Xcd
|
||||
Array42cd
|
||||
Array43cd
|
||||
Array44cd
|
||||
Array4Xcd
|
||||
ArrayX2cd
|
||||
ArrayX3cd
|
||||
ArrayX4cd
|
||||
ArrayXXcd
|
||||
Array2cd
|
||||
Array3cd
|
||||
Array4cd
|
||||
ArrayXcd
|
||||
|
||||
ctypedef fused StorageOrder:
|
||||
RowMajor
|
||||
ColMajor
|
||||
|
||||
ctypedef fused MapOptions:
|
||||
Aligned
|
||||
Unaligned
|
||||
|
||||
cdef extern from "eigency_cpp.h" namespace "eigency":
|
||||
|
||||
cdef cppclass _1 "1":
|
||||
pass
|
||||
|
||||
cdef cppclass _2 "2":
|
||||
pass
|
||||
|
||||
cdef cppclass _3 "3":
|
||||
pass
|
||||
|
||||
cdef cppclass _4 "4":
|
||||
pass
|
||||
|
||||
cdef cppclass _5 "5":
|
||||
pass
|
||||
|
||||
cdef cppclass _6 "6":
|
||||
pass
|
||||
|
||||
cdef cppclass _7 "7":
|
||||
pass
|
||||
|
||||
cdef cppclass _8 "8":
|
||||
pass
|
||||
|
||||
cdef cppclass _9 "9":
|
||||
pass
|
||||
|
||||
cdef cppclass _10 "10":
|
||||
pass
|
||||
|
||||
cdef cppclass _11 "11":
|
||||
pass
|
||||
|
||||
cdef cppclass _12 "12":
|
||||
pass
|
||||
|
||||
cdef cppclass _13 "13":
|
||||
pass
|
||||
|
||||
cdef cppclass _14 "14":
|
||||
pass
|
||||
|
||||
cdef cppclass _15 "15":
|
||||
pass
|
||||
|
||||
cdef cppclass _16 "16":
|
||||
pass
|
||||
|
||||
cdef cppclass _17 "17":
|
||||
pass
|
||||
|
||||
cdef cppclass _18 "18":
|
||||
pass
|
||||
|
||||
cdef cppclass _19 "19":
|
||||
pass
|
||||
|
||||
cdef cppclass _20 "20":
|
||||
pass
|
||||
|
||||
cdef cppclass _21 "21":
|
||||
pass
|
||||
|
||||
cdef cppclass _22 "22":
|
||||
pass
|
||||
|
||||
cdef cppclass _23 "23":
|
||||
pass
|
||||
|
||||
cdef cppclass _24 "24":
|
||||
pass
|
||||
|
||||
cdef cppclass _25 "25":
|
||||
pass
|
||||
|
||||
cdef cppclass _26 "26":
|
||||
pass
|
||||
|
||||
cdef cppclass _27 "27":
|
||||
pass
|
||||
|
||||
cdef cppclass _28 "28":
|
||||
pass
|
||||
|
||||
cdef cppclass _29 "29":
|
||||
pass
|
||||
|
||||
cdef cppclass _30 "30":
|
||||
pass
|
||||
|
||||
cdef cppclass _31 "31":
|
||||
pass
|
||||
|
||||
cdef cppclass _32 "32":
|
||||
pass
|
||||
|
||||
cdef cppclass PlainObjectBase:
|
||||
pass
|
||||
|
||||
cdef cppclass Map[DenseTypeShort](PlainObjectBase):
|
||||
Map() except +
|
||||
Map(np.ndarray array) except +
|
||||
|
||||
cdef cppclass FlattenedMap[DenseType, dtype, Rows, Cols]:
|
||||
FlattenedMap() except +
|
||||
FlattenedMap(np.ndarray array) except +
|
||||
|
||||
cdef cppclass FlattenedMapWithOrder "eigency::FlattenedMap" [DenseType, dtype, Rows, Cols, StorageOrder]:
|
||||
FlattenedMapWithOrder() except +
|
||||
FlattenedMapWithOrder(np.ndarray array) except +
|
||||
|
||||
cdef cppclass FlattenedMapWithStride "eigency::FlattenedMap" [DenseType, dtype, Rows, Cols, StorageOrder, MapOptions, StrideOuter, StrideInner]:
|
||||
FlattenedMapWithStride() except +
|
||||
FlattenedMapWithStride(np.ndarray array) except +
|
||||
|
||||
cdef np.ndarray ndarray_view(PlainObjectBase &)
|
||||
cdef np.ndarray ndarray_copy(PlainObjectBase &)
|
||||
cdef np.ndarray ndarray(PlainObjectBase &)
|
||||
|
||||
|
||||
cdef extern from "eigency_cpp.h" namespace "Eigen":
|
||||
|
||||
cdef cppclass Dynamic:
|
||||
pass
|
||||
|
||||
cdef cppclass RowMajor:
|
||||
pass
|
||||
|
||||
cdef cppclass ColMajor:
|
||||
pass
|
||||
|
||||
cdef cppclass Aligned:
|
||||
pass
|
||||
|
||||
cdef cppclass Unaligned:
|
||||
pass
|
||||
|
||||
cdef cppclass Matrix(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass VectorXd(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Vector1i(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Vector2i(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Vector3i(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Vector4i(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass VectorXi(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass RowVector1i(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass RowVector2i(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass RowVector3i(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass RowVector4i(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass RowVectorXi(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Matrix1i(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Matrix2i(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Matrix3i(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Matrix4i(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass MatrixXi(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Vector1f(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Vector2f(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Vector3f(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Vector4f(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass VectorXf(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass RowVector1f(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass RowVector2f(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass RowVector3f(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass RowVector4f(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass RowVectorXf(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Matrix1f(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Matrix2f(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Matrix3f(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Matrix4f(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass MatrixXf(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Vector1d(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Vector2d(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Vector3d(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Vector4d(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass VectorXd(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass RowVector1d(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass RowVector2d(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass RowVector3d(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass RowVector4d(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass RowVectorXd(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Matrix1d(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Matrix2d(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Matrix3d(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Matrix4d(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass MatrixXd(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Vector1cf(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Vector2cf(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Vector3cf(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Vector4cf(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass VectorXcf(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass RowVector1cf(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass RowVector2cf(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass RowVector3cf(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass RowVector4cf(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass RowVectorXcf(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Matrix1cf(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Matrix2cf(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Matrix3cf(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Matrix4cf(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass MatrixXcf(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Vector1cd(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Vector2cd(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Vector3cd(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Vector4cd(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass VectorXcd(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass RowVector1cd(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass RowVector2cd(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass RowVector3cd(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass RowVector4cd(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass RowVectorXcd(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Matrix1cd(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Matrix2cd(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Matrix3cd(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Matrix4cd(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass MatrixXcd(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array22i(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array23i(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array24i(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array2Xi(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array32i(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array33i(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array34i(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array3Xi(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array42i(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array43i(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array44i(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array4Xi(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass ArrayX2i(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass ArrayX3i(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass ArrayX4i(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass ArrayXXi(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array2i(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array3i(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array4i(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass ArrayXi(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array22f(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array23f(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array24f(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array2Xf(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array32f(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array33f(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array34f(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array3Xf(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array42f(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array43f(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array44f(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array4Xf(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass ArrayX2f(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass ArrayX3f(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass ArrayX4f(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass ArrayXXf(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array2f(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array3f(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array4f(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass ArrayXf(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array22d(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array23d(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array24d(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array2Xd(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array32d(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array33d(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array34d(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array3Xd(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array42d(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array43d(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array44d(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array4Xd(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass ArrayX2d(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass ArrayX3d(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass ArrayX4d(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass ArrayXXd(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array2d(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array3d(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array4d(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass ArrayXd(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array22cf(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array23cf(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array24cf(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array2Xcf(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array32cf(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array33cf(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array34cf(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array3Xcf(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array42cf(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array43cf(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array44cf(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array4Xcf(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass ArrayX2cf(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass ArrayX3cf(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass ArrayX4cf(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass ArrayXXcf(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array2cf(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array3cf(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array4cf(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass ArrayXcf(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array22cd(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array23cd(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array24cd(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array2Xcd(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array32cd(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array33cd(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array34cd(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array3Xcd(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array42cd(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array43cd(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array44cd(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array4Xcd(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass ArrayX2cd(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass ArrayX3cd(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass ArrayX4cd(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass ArrayXXcd(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array2cd(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array3cd(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass Array4cd(PlainObjectBase):
|
||||
pass
|
||||
|
||||
cdef cppclass ArrayXcd(PlainObjectBase):
|
||||
pass
|
||||
|
||||
|
|
@ -0,0 +1 @@
|
|||
|
|
@ -0,0 +1,504 @@
|
|||
#include <Eigen/Dense>
|
||||
|
||||
#include <iostream>
|
||||
#include <stdexcept>
|
||||
#include <complex>
|
||||
|
||||
typedef ::std::complex< double > __pyx_t_double_complex;
|
||||
typedef ::std::complex< float > __pyx_t_float_complex;
|
||||
|
||||
#include "conversions_api.h"
|
||||
|
||||
#ifndef EIGENCY_CPP
|
||||
#define EIGENCY_CPP
|
||||
|
||||
namespace eigency {
|
||||
|
||||
template<typename Scalar>
|
||||
inline PyArrayObject *_ndarray_view(Scalar *, long rows, long cols, bool is_row_major, long outer_stride=0, long inner_stride=0);
|
||||
template<typename Scalar>
|
||||
inline PyArrayObject *_ndarray_copy(const Scalar *, long rows, long cols, bool is_row_major, long outer_stride=0, long inner_stride=0);
|
||||
|
||||
// Strides:
|
||||
// Eigen and numpy differ in their way of dealing with strides. Eigen has the concept of outer and
|
||||
// inner strides, which are dependent on whether the array/matrix is row-major of column-major:
|
||||
// Inner stride: denotes the offset between succeeding elements in each row (row-major) or column (column-major).
|
||||
// Outer stride: denotes the offset between succeeding rows (row-major) or succeeding columns (column-major).
|
||||
// In contrast, numpy's stride is simply a measure of how fast each dimension should be incremented.
|
||||
// Consequently, a switch in numpy storage order from row-major to column-major involves a switch
|
||||
// in strides, while it does not affect the stride in Eigen.
|
||||
template<>
|
||||
inline PyArrayObject *_ndarray_view<double>(double *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
|
||||
if (is_row_major) {
|
||||
// Eigen row-major mode: row_stride=outer_stride, and col_stride=inner_stride
|
||||
// If no stride is given, the row_stride is set to the number of columns.
|
||||
return ndarray_double_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
|
||||
} else {
|
||||
// Eigen column-major mode: row_stride=outer_stride, and col_stride=inner_stride
|
||||
// If no stride is given, the cow_stride is set to the number of rows.
|
||||
return ndarray_double_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
|
||||
}
|
||||
}
|
||||
template<>
|
||||
inline PyArrayObject *_ndarray_copy<double>(const double *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
|
||||
if (is_row_major)
|
||||
return ndarray_copy_double_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
|
||||
else
|
||||
return ndarray_copy_double_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
|
||||
}
|
||||
|
||||
template<>
|
||||
inline PyArrayObject *_ndarray_view<float>(float *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
|
||||
if (is_row_major)
|
||||
return ndarray_float_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
|
||||
else
|
||||
return ndarray_float_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
|
||||
}
|
||||
template<>
|
||||
inline PyArrayObject *_ndarray_copy<float>(const float *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
|
||||
if (is_row_major)
|
||||
return ndarray_copy_float_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
|
||||
else
|
||||
return ndarray_copy_float_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
|
||||
}
|
||||
|
||||
template<>
|
||||
inline PyArrayObject *_ndarray_view<long>(long *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
|
||||
if (is_row_major)
|
||||
return ndarray_long_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
|
||||
else
|
||||
return ndarray_long_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
|
||||
}
|
||||
template<>
|
||||
inline PyArrayObject *_ndarray_copy<long>(const long *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
|
||||
if (is_row_major)
|
||||
return ndarray_copy_long_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
|
||||
else
|
||||
return ndarray_copy_long_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
|
||||
}
|
||||
|
||||
template<>
|
||||
inline PyArrayObject *_ndarray_view<unsigned long>(unsigned long *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
|
||||
if (is_row_major)
|
||||
return ndarray_ulong_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
|
||||
else
|
||||
return ndarray_ulong_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
|
||||
}
|
||||
template<>
|
||||
inline PyArrayObject *_ndarray_copy<unsigned long>(const unsigned long *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
|
||||
if (is_row_major)
|
||||
return ndarray_copy_ulong_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
|
||||
else
|
||||
return ndarray_copy_ulong_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
|
||||
}
|
||||
|
||||
template<>
|
||||
inline PyArrayObject *_ndarray_view<int>(int *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
|
||||
if (is_row_major)
|
||||
return ndarray_int_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
|
||||
else
|
||||
return ndarray_int_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
|
||||
}
|
||||
template<>
|
||||
inline PyArrayObject *_ndarray_copy<int>(const int *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
|
||||
if (is_row_major)
|
||||
return ndarray_copy_int_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
|
||||
else
|
||||
return ndarray_copy_int_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
|
||||
}
|
||||
|
||||
template<>
|
||||
inline PyArrayObject *_ndarray_view<unsigned int>(unsigned int *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
|
||||
if (is_row_major)
|
||||
return ndarray_uint_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
|
||||
else
|
||||
return ndarray_uint_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
|
||||
}
|
||||
template<>
|
||||
inline PyArrayObject *_ndarray_copy<unsigned int>(const unsigned int *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
|
||||
if (is_row_major)
|
||||
return ndarray_copy_uint_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
|
||||
else
|
||||
return ndarray_copy_uint_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
|
||||
}
|
||||
|
||||
template<>
|
||||
inline PyArrayObject *_ndarray_view<short>(short *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
|
||||
if (is_row_major)
|
||||
return ndarray_short_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
|
||||
else
|
||||
return ndarray_short_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
|
||||
}
|
||||
template<>
|
||||
inline PyArrayObject *_ndarray_copy<short>(const short *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
|
||||
if (is_row_major)
|
||||
return ndarray_copy_short_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
|
||||
else
|
||||
return ndarray_copy_short_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
|
||||
}
|
||||
|
||||
template<>
|
||||
inline PyArrayObject *_ndarray_view<unsigned short>(unsigned short *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
|
||||
if (is_row_major)
|
||||
return ndarray_ushort_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
|
||||
else
|
||||
return ndarray_ushort_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
|
||||
}
|
||||
template<>
|
||||
inline PyArrayObject *_ndarray_copy<unsigned short>(const unsigned short *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
|
||||
if (is_row_major)
|
||||
return ndarray_copy_ushort_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
|
||||
else
|
||||
return ndarray_copy_ushort_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
|
||||
}
|
||||
|
||||
template<>
|
||||
inline PyArrayObject *_ndarray_view<signed char>(signed char *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
|
||||
if (is_row_major)
|
||||
return ndarray_schar_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
|
||||
else
|
||||
return ndarray_schar_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
|
||||
}
|
||||
template<>
|
||||
inline PyArrayObject *_ndarray_copy<signed char>(const signed char *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
|
||||
if (is_row_major)
|
||||
return ndarray_copy_schar_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
|
||||
else
|
||||
return ndarray_copy_schar_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
|
||||
}
|
||||
|
||||
template<>
|
||||
inline PyArrayObject *_ndarray_view<unsigned char>(unsigned char *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
|
||||
if (is_row_major)
|
||||
return ndarray_uchar_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
|
||||
else
|
||||
return ndarray_uchar_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
|
||||
}
|
||||
template<>
|
||||
inline PyArrayObject *_ndarray_copy<unsigned char>(const unsigned char *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
|
||||
if (is_row_major)
|
||||
return ndarray_copy_uchar_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
|
||||
else
|
||||
return ndarray_copy_uchar_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
|
||||
}
|
||||
|
||||
template<>
|
||||
inline PyArrayObject *_ndarray_view<std::complex<double> >(std::complex<double> *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
|
||||
if (is_row_major)
|
||||
return ndarray_complex_double_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
|
||||
else
|
||||
return ndarray_complex_double_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
|
||||
}
|
||||
template<>
|
||||
inline PyArrayObject *_ndarray_copy<std::complex<double> >(const std::complex<double> *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
|
||||
if (is_row_major)
|
||||
return ndarray_copy_complex_double_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
|
||||
else
|
||||
return ndarray_copy_complex_double_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
|
||||
}
|
||||
|
||||
template<>
|
||||
inline PyArrayObject *_ndarray_view<std::complex<float> >(std::complex<float> *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
|
||||
if (is_row_major)
|
||||
return ndarray_complex_float_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
|
||||
else
|
||||
return ndarray_complex_float_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
|
||||
}
|
||||
template<>
|
||||
inline PyArrayObject *_ndarray_copy<std::complex<float> >(const std::complex<float> *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
|
||||
if (is_row_major)
|
||||
return ndarray_copy_complex_float_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
|
||||
else
|
||||
return ndarray_copy_complex_float_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
|
||||
}
|
||||
|
||||
|
||||
template <typename Derived>
|
||||
inline PyArrayObject *ndarray(Eigen::PlainObjectBase<Derived> &m) {
|
||||
import_gtsam_eigency__conversions();
|
||||
return _ndarray_view(m.data(), m.rows(), m.cols(), m.IsRowMajor);
|
||||
}
|
||||
// If C++11 is available, check if m is an r-value reference, in
|
||||
// which case a copy should always be made
|
||||
#if __cplusplus >= 201103L
|
||||
template <typename Derived>
|
||||
inline PyArrayObject *ndarray(Eigen::PlainObjectBase<Derived> &&m) {
|
||||
import_gtsam_eigency__conversions();
|
||||
return _ndarray_copy(m.data(), m.rows(), m.cols(), m.IsRowMajor);
|
||||
}
|
||||
#endif
|
||||
template <typename Derived>
|
||||
inline PyArrayObject *ndarray(const Eigen::PlainObjectBase<Derived> &m) {
|
||||
import_gtsam_eigency__conversions();
|
||||
return _ndarray_copy(m.data(), m.rows(), m.cols(), m.IsRowMajor);
|
||||
}
|
||||
template <typename Derived>
|
||||
inline PyArrayObject *ndarray_view(Eigen::PlainObjectBase<Derived> &m) {
|
||||
import_gtsam_eigency__conversions();
|
||||
return _ndarray_view(m.data(), m.rows(), m.cols(), m.IsRowMajor);
|
||||
}
|
||||
template <typename Derived>
|
||||
inline PyArrayObject *ndarray_view(const Eigen::PlainObjectBase<Derived> &m) {
|
||||
import_gtsam_eigency__conversions();
|
||||
return _ndarray_view(const_cast<typename Derived::Scalar*>(m.data()), m.rows(), m.cols(), m.IsRowMajor);
|
||||
}
|
||||
template <typename Derived>
|
||||
inline PyArrayObject *ndarray_copy(const Eigen::PlainObjectBase<Derived> &m) {
|
||||
import_gtsam_eigency__conversions();
|
||||
return _ndarray_copy(m.data(), m.rows(), m.cols(), m.IsRowMajor);
|
||||
}
|
||||
|
||||
template <typename Derived, int MapOptions, typename Stride>
|
||||
inline PyArrayObject *ndarray(Eigen::Map<Derived, MapOptions, Stride> &m) {
|
||||
import_gtsam_eigency__conversions();
|
||||
return _ndarray_view(m.data(), m.rows(), m.cols(), m.IsRowMajor, m.outerStride(), m.innerStride());
|
||||
}
|
||||
template <typename Derived, int MapOptions, typename Stride>
|
||||
inline PyArrayObject *ndarray(const Eigen::Map<Derived, MapOptions, Stride> &m) {
|
||||
import_gtsam_eigency__conversions();
|
||||
// Since this is a map, we assume that ownership is correctly taken care
|
||||
// of, and we avoid taking a copy
|
||||
return _ndarray_view(const_cast<typename Derived::Scalar*>(m.data()), m.rows(), m.cols(), m.IsRowMajor, m.outerStride(), m.innerStride());
|
||||
}
|
||||
template <typename Derived, int MapOptions, typename Stride>
|
||||
inline PyArrayObject *ndarray_view(Eigen::Map<Derived, MapOptions, Stride> &m) {
|
||||
import_gtsam_eigency__conversions();
|
||||
return _ndarray_view(m.data(), m.rows(), m.cols(), m.IsRowMajor, m.outerStride(), m.innerStride());
|
||||
}
|
||||
template <typename Derived, int MapOptions, typename Stride>
|
||||
inline PyArrayObject *ndarray_view(const Eigen::Map<Derived, MapOptions, Stride> &m) {
|
||||
import_gtsam_eigency__conversions();
|
||||
return _ndarray_view(const_cast<typename Derived::Scalar*>(m.data()), m.rows(), m.cols(), m.IsRowMajor, m.outerStride(), m.innerStride());
|
||||
}
|
||||
template <typename Derived, int MapOptions, typename Stride>
|
||||
inline PyArrayObject *ndarray_copy(const Eigen::Map<Derived, MapOptions, Stride> &m) {
|
||||
import_gtsam_eigency__conversions();
|
||||
return _ndarray_copy(m.data(), m.rows(), m.cols(), m.IsRowMajor, m.outerStride(), m.innerStride());
|
||||
}
|
||||
|
||||
|
||||
template <typename MatrixType,
|
||||
int _MapOptions = Eigen::Unaligned,
|
||||
typename _StrideType=Eigen::Stride<0,0> >
|
||||
class MapBase: public Eigen::Map<MatrixType, _MapOptions, _StrideType> {
|
||||
public:
|
||||
typedef Eigen::Map<MatrixType, _MapOptions, _StrideType> Base;
|
||||
typedef typename Base::Scalar Scalar;
|
||||
|
||||
MapBase(Scalar* data,
|
||||
long rows,
|
||||
long cols,
|
||||
_StrideType stride=_StrideType())
|
||||
: Base(data,
|
||||
// If both dimensions are dynamic or dimensions match, accept dimensions as they are
|
||||
((Base::RowsAtCompileTime==Eigen::Dynamic && Base::ColsAtCompileTime==Eigen::Dynamic) ||
|
||||
(Base::RowsAtCompileTime==rows && Base::ColsAtCompileTime==cols))
|
||||
? rows
|
||||
// otherwise, test if swapping them makes them fit
|
||||
: ((Base::RowsAtCompileTime==cols || Base::ColsAtCompileTime==rows)
|
||||
? cols
|
||||
: rows),
|
||||
((Base::RowsAtCompileTime==Eigen::Dynamic && Base::ColsAtCompileTime==Eigen::Dynamic) ||
|
||||
(Base::RowsAtCompileTime==rows && Base::ColsAtCompileTime==cols))
|
||||
? cols
|
||||
: ((Base::RowsAtCompileTime==cols || Base::ColsAtCompileTime==rows)
|
||||
? rows
|
||||
: cols),
|
||||
stride
|
||||
) {}
|
||||
|
||||
MapBase &operator=(const MatrixType &other) {
|
||||
Base::operator=(other);
|
||||
return *this;
|
||||
}
|
||||
|
||||
virtual ~MapBase() { }
|
||||
};
|
||||
|
||||
|
||||
template <template<class,int,int,int,int,int> class EigencyDenseBase,
|
||||
typename Scalar,
|
||||
int _Rows, int _Cols,
|
||||
int _Options = Eigen::AutoAlign |
|
||||
#if defined(__GNUC__) && __GNUC__==3 && __GNUC_MINOR__==4
|
||||
// workaround a bug in at least gcc 3.4.6
|
||||
// the innermost ?: ternary operator is misparsed. We write it slightly
|
||||
// differently and this makes gcc 3.4.6 happy, but it's ugly.
|
||||
// The error would only show up with EIGEN_DEFAULT_TO_ROW_MAJOR is defined
|
||||
// (when EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION is RowMajor)
|
||||
( (_Rows==1 && _Cols!=1) ? Eigen::RowMajor
|
||||
// EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION contains explicit namespace since Eigen 3.1.19
|
||||
#if EIGEN_VERSION_AT_LEAST(3,2,90)
|
||||
: !(_Cols==1 && _Rows!=1) ? EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION
|
||||
#else
|
||||
: !(_Cols==1 && _Rows!=1) ? Eigen::EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION
|
||||
#endif
|
||||
: ColMajor ),
|
||||
#else
|
||||
( (_Rows==1 && _Cols!=1) ? Eigen::RowMajor
|
||||
: (_Cols==1 && _Rows!=1) ? Eigen::ColMajor
|
||||
// EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION contains explicit namespace since Eigen 3.1.19
|
||||
#if EIGEN_VERSION_AT_LEAST(3,2,90)
|
||||
: EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION ),
|
||||
#else
|
||||
: Eigen::EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION ),
|
||||
#endif
|
||||
#endif
|
||||
int _MapOptions = Eigen::Unaligned,
|
||||
int _StrideOuter=0, int _StrideInner=0,
|
||||
int _MaxRows = _Rows,
|
||||
int _MaxCols = _Cols>
|
||||
class FlattenedMap: public MapBase<EigencyDenseBase<Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>, _MapOptions, Eigen::Stride<_StrideOuter, _StrideInner> > {
|
||||
public:
|
||||
typedef MapBase<EigencyDenseBase<Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>, _MapOptions, Eigen::Stride<_StrideOuter, _StrideInner> > Base;
|
||||
|
||||
FlattenedMap()
|
||||
: Base(NULL, 0, 0),
|
||||
object_(NULL) {}
|
||||
|
||||
FlattenedMap(Scalar *data, long rows, long cols, long outer_stride=0, long inner_stride=0)
|
||||
: Base(data, rows, cols,
|
||||
Eigen::Stride<_StrideOuter, _StrideInner>(outer_stride, inner_stride)),
|
||||
object_(NULL) {
|
||||
}
|
||||
|
||||
FlattenedMap(PyArrayObject *object)
|
||||
: Base((Scalar *)((PyArrayObject*)object)->data,
|
||||
// : Base(_from_numpy<Scalar>((PyArrayObject*)object),
|
||||
(((PyArrayObject*)object)->nd == 2) ? ((PyArrayObject*)object)->dimensions[0] : 1,
|
||||
(((PyArrayObject*)object)->nd == 2) ? ((PyArrayObject*)object)->dimensions[1] : ((PyArrayObject*)object)->dimensions[0],
|
||||
Eigen::Stride<_StrideOuter, _StrideInner>(_StrideOuter != Eigen::Dynamic ? _StrideOuter : (((PyArrayObject*)object)->nd == 2) ? ((PyArrayObject*)object)->dimensions[0] : 1,
|
||||
_StrideInner != Eigen::Dynamic ? _StrideInner : (((PyArrayObject*)object)->nd == 2) ? ((PyArrayObject*)object)->dimensions[1] : ((PyArrayObject*)object)->dimensions[0])),
|
||||
object_(object) {
|
||||
|
||||
if (((PyObject*)object != Py_None) && !PyArray_ISONESEGMENT(object))
|
||||
throw std::invalid_argument("Numpy array must be a in one contiguous segment to be able to be transferred to a Eigen Map.");
|
||||
|
||||
Py_XINCREF(object_);
|
||||
}
|
||||
FlattenedMap &operator=(const FlattenedMap &other) {
|
||||
if (other.object_) {
|
||||
new (this) FlattenedMap(other.object_);
|
||||
} else {
|
||||
// Replace the memory that we point to (not a memory allocation)
|
||||
new (this) FlattenedMap(const_cast<Scalar*>(other.data()),
|
||||
other.rows(),
|
||||
other.cols(),
|
||||
other.outerStride(),
|
||||
other.innerStride());
|
||||
}
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
operator Base() const {
|
||||
return static_cast<Base>(*this);
|
||||
}
|
||||
|
||||
operator Base&() const {
|
||||
return static_cast<Base&>(*this);
|
||||
}
|
||||
|
||||
operator EigencyDenseBase<Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>() const {
|
||||
return EigencyDenseBase<Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>(static_cast<Base>(*this));
|
||||
}
|
||||
|
||||
virtual ~FlattenedMap() {
|
||||
Py_XDECREF(object_);
|
||||
}
|
||||
|
||||
private:
|
||||
PyArrayObject * const object_;
|
||||
};
|
||||
|
||||
|
||||
template <typename MatrixType>
|
||||
class Map: public MapBase<MatrixType> {
|
||||
public:
|
||||
typedef MapBase<MatrixType> Base;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
|
||||
enum {
|
||||
RowsAtCompileTime = Base::Base::RowsAtCompileTime,
|
||||
ColsAtCompileTime = Base::Base::ColsAtCompileTime
|
||||
};
|
||||
|
||||
Map()
|
||||
: Base(NULL,
|
||||
(RowsAtCompileTime == Eigen::Dynamic) ? 0 : RowsAtCompileTime,
|
||||
(ColsAtCompileTime == Eigen::Dynamic) ? 0 : ColsAtCompileTime),
|
||||
object_(NULL) {
|
||||
}
|
||||
|
||||
Map(Scalar *data, long rows, long cols)
|
||||
: Base(data, rows, cols),
|
||||
object_(NULL) {}
|
||||
|
||||
Map(PyArrayObject *object)
|
||||
: Base((PyObject*)object == Py_None? NULL: (Scalar *)object->data,
|
||||
// ROW: If array is in row-major order, transpose (see README)
|
||||
(PyObject*)object == Py_None? 0 :
|
||||
(!PyArray_IS_F_CONTIGUOUS(object)
|
||||
? ((object->nd == 1)
|
||||
? 1 // ROW: If 1D row-major numpy array, set to 1 (row vector)
|
||||
: object->dimensions[1])
|
||||
: object->dimensions[0]),
|
||||
// COLUMN: If array is in row-major order: transpose (see README)
|
||||
(PyObject*)object == Py_None? 0 :
|
||||
(!PyArray_IS_F_CONTIGUOUS(object)
|
||||
? object->dimensions[0]
|
||||
: ((object->nd == 1)
|
||||
? 1 // COLUMN: If 1D col-major numpy array, set to length (column vector)
|
||||
: object->dimensions[1]))),
|
||||
object_(object) {
|
||||
|
||||
if (((PyObject*)object != Py_None) && !PyArray_ISONESEGMENT(object))
|
||||
throw std::invalid_argument("Numpy array must be a in one contiguous segment to be able to be transferred to a Eigen Map.");
|
||||
Py_XINCREF(object_);
|
||||
}
|
||||
|
||||
Map &operator=(const Map &other) {
|
||||
if (other.object_) {
|
||||
new (this) Map(other.object_);
|
||||
} else {
|
||||
// Replace the memory that we point to (not a memory allocation)
|
||||
new (this) Map(const_cast<Scalar*>(other.data()),
|
||||
other.rows(),
|
||||
other.cols());
|
||||
}
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
Map &operator=(const MatrixType &other) {
|
||||
MapBase<MatrixType>::operator=(other);
|
||||
return *this;
|
||||
}
|
||||
|
||||
operator Base() const {
|
||||
return static_cast<Base>(*this);
|
||||
}
|
||||
|
||||
operator Base&() const {
|
||||
return static_cast<Base&>(*this);
|
||||
}
|
||||
|
||||
operator MatrixType() const {
|
||||
return MatrixType(static_cast<Base>(*this));
|
||||
}
|
||||
|
||||
virtual ~Map() {
|
||||
Py_XDECREF(object_);
|
||||
}
|
||||
|
||||
private:
|
||||
PyArrayObject * const object_;
|
||||
};
|
||||
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
|
|
@ -0,0 +1,3 @@
|
|||
Cython>=0.25.2
|
||||
backports_abc>=0.5
|
||||
numpy>=1.12.0
|
|
@ -0,0 +1,7 @@
|
|||
// add unary measurement factors, like GPS, on all three poses
|
||||
noiseModel::Diagonal::shared_ptr unaryNoise =
|
||||
noiseModel::Diagonal::Sigmas(Vector2(0.1, 0.1)); // 10cm std on x,y
|
||||
graph.add(boost::make_shared<UnaryFactor>(1, 0.0, 0.0, unaryNoise));
|
||||
graph.add(boost::make_shared<UnaryFactor>(2, 2.0, 0.0, unaryNoise));
|
||||
graph.add(boost::make_shared<UnaryFactor>(3, 4.0, 0.0, unaryNoise));
|
||||
|
|
@ -0,0 +1,14 @@
|
|||
class UnaryFactor: public NoiseModelFactor1<Pose2> {
|
||||
double mx_, my_; ///< X and Y measurements
|
||||
|
||||
public:
|
||||
UnaryFactor(Key j, double x, double y, const SharedNoiseModel& model):
|
||||
NoiseModelFactor1<Pose2>(model, j), mx_(x), my_(y) {}
|
||||
|
||||
Vector evaluateError(const Pose2& q,
|
||||
boost::optional<Matrix&> H = boost::none) const
|
||||
{
|
||||
if (H) (*H) = (Matrix(2,3)<< 1.0,0.0,0.0, 0.0,1.0,0.0).finished();
|
||||
return (Vector(2) << q.x() - mx_, q.y() - my_).finished();
|
||||
}
|
||||
};
|
|
@ -0,0 +1,18 @@
|
|||
Final Result:
|
||||
Values with 3 values:
|
||||
Value 1: (-1.5e-14, 1.3e-15, -1.4e-16)
|
||||
Value 2: (2, 3.1e-16, -8.5e-17)
|
||||
Value 3: (4, -6e-16, -8.2e-17)
|
||||
|
||||
x1 covariance:
|
||||
0.0083 4.3e-19 -1.1e-18
|
||||
4.3e-19 0.0094 -0.0031
|
||||
-1.1e-18 -0.0031 0.0082
|
||||
x2 covariance:
|
||||
0.0071 2.5e-19 -3.4e-19
|
||||
2.5e-19 0.0078 -0.0011
|
||||
-3.4e-19 -0.0011 0.0082
|
||||
x3 covariance:
|
||||
0.0083 4.4e-19 1.2e-18
|
||||
4.4e-19 0.0094 0.0031
|
||||
1.2e-18 0.0031 0.018
|
|
@ -0,0 +1,15 @@
|
|||
// Create an empty nonlinear factor graph
|
||||
NonlinearFactorGraph graph;
|
||||
|
||||
// Add a Gaussian prior on pose x_1
|
||||
Pose2 priorMean(0.0, 0.0, 0.0);
|
||||
noiseModel::Diagonal::shared_ptr priorNoise =
|
||||
noiseModel::Diagonal::Sigmas(Vector3(0.3, 0.3, 0.1));
|
||||
graph.add(PriorFactor<Pose2>(1, priorMean, priorNoise));
|
||||
|
||||
// Add two odometry factors
|
||||
Pose2 odometry(2.0, 0.0, 0.0);
|
||||
noiseModel::Diagonal::shared_ptr odometryNoise =
|
||||
noiseModel::Diagonal::Sigmas(Vector3(0.2, 0.2, 0.1));
|
||||
graph.add(BetweenFactor<Pose2>(1, 2, odometry, odometryNoise));
|
||||
graph.add(BetweenFactor<Pose2>(2, 3, odometry, odometryNoise));
|
|
@ -0,0 +1,6 @@
|
|||
// Query the marginals
|
||||
cout.precision(2);
|
||||
Marginals marginals(graph, result);
|
||||
cout << "x1 covariance:\n" << marginals.marginalCovariance(1) << endl;
|
||||
cout << "x2 covariance:\n" << marginals.marginalCovariance(2) << endl;
|
||||
cout << "x3 covariance:\n" << marginals.marginalCovariance(3) << endl;
|
|
@ -0,0 +1,9 @@
|
|||
// create (deliberatly inaccurate) initial estimate
|
||||
Values initial;
|
||||
initial.insert(1, Pose2(0.5, 0.0, 0.2));
|
||||
initial.insert(2, Pose2(2.3, 0.1, -0.2));
|
||||
initial.insert(3, Pose2(4.1, 0.1, 0.1));
|
||||
|
||||
// optimize using Levenberg-Marquardt optimization
|
||||
Values result = LevenbergMarquardtOptimizer(graph, initial).optimize();
|
||||
|
|
@ -0,0 +1,11 @@
|
|||
Factor Graph:
|
||||
size: 3
|
||||
factor 0: PriorFactor on 1
|
||||
prior mean: (0, 0, 0)
|
||||
noise model: diagonal sigmas [0.3; 0.3; 0.1];
|
||||
factor 1: BetweenFactor(1,2)
|
||||
measured: (2, 0, 0)
|
||||
noise model: diagonal sigmas [0.2; 0.2; 0.1];
|
||||
factor 2: BetweenFactor(2,3)
|
||||
measured: (2, 0, 0)
|
||||
noise model: diagonal sigmas [0.2; 0.2; 0.1];
|
|
@ -0,0 +1,11 @@
|
|||
Initial Estimate:
|
||||
Values with 3 values:
|
||||
Value 1: (0.5, 0, 0.2)
|
||||
Value 2: (2.3, 0.1, -0.2)
|
||||
Value 3: (4.1, 0.1, 0.1)
|
||||
|
||||
Final Result:
|
||||
Values with 3 values:
|
||||
Value 1: (-1.8e-16, 8.7e-18, -9.1e-19)
|
||||
Value 2: (2, 7.4e-18, -2.5e-18)
|
||||
Value 3: (4, -1.8e-18, -3.1e-18)
|
|
@ -0,0 +1,12 @@
|
|||
x1 covariance:
|
||||
0.09 1.1e-47 5.7e-33
|
||||
1.1e-47 0.09 1.9e-17
|
||||
5.7e-33 1.9e-17 0.01
|
||||
x2 covariance:
|
||||
0.13 4.7e-18 2.4e-18
|
||||
4.7e-18 0.17 0.02
|
||||
2.4e-18 0.02 0.02
|
||||
x3 covariance:
|
||||
0.17 2.7e-17 8.4e-18
|
||||
2.7e-17 0.37 0.06
|
||||
8.4e-18 0.06 0.03
|
|
@ -0,0 +1,25 @@
|
|||
% Create graph container and add factors to it
|
||||
graph = NonlinearFactorGraph;
|
||||
|
||||
% Create keys for variables
|
||||
i1 = symbol('x',1); i2 = symbol('x',2); i3 = symbol('x',3);
|
||||
j1 = symbol('l',1); j2 = symbol('l',2);
|
||||
|
||||
% Add prior
|
||||
priorMean = Pose2(0.0, 0.0, 0.0); % prior at origin
|
||||
priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.1]);
|
||||
% add directly to graph
|
||||
graph.add(PriorFactorPose2(i1, priorMean, priorNoise));
|
||||
|
||||
% Add odometry
|
||||
odometry = Pose2(2.0, 0.0, 0.0);
|
||||
odometryNoise = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]);
|
||||
graph.add(BetweenFactorPose2(i1, i2, odometry, odometryNoise));
|
||||
graph.add(BetweenFactorPose2(i2, i3, odometry, odometryNoise));
|
||||
|
||||
% Add bearing/range measurement factors
|
||||
degrees = pi/180;
|
||||
brNoise = noiseModel.Diagonal.Sigmas([0.1; 0.2]);
|
||||
graph.add(BearingRangeFactor2D(i1, j1, Rot2(45*degrees), sqrt(8), brNoise));
|
||||
graph.add(BearingRangeFactor2D(i2, j1, Rot2(90*degrees), 2, brNoise));
|
||||
graph.add(BearingRangeFactor2D(i3, j2, Rot2(90*degrees), 2, brNoise));
|
|
@ -0,0 +1,7 @@
|
|||
>> result
|
||||
Values with 5 values:
|
||||
l1: (2, 2)
|
||||
l2: (4, 2)
|
||||
x1: (-1.8e-16, 5.1e-17, -1.5e-17)
|
||||
x2: (2, -5.8e-16, -4.6e-16)
|
||||
x3: (4, -3.1e-15, -4.6e-16)
|
|
@ -0,0 +1,15 @@
|
|||
%% Initialize graph, initial estimate, and odometry noise
|
||||
datafile = findExampleDataFile('w100.graph');
|
||||
model = noiseModel.Diagonal.Sigmas([0.05; 0.05; 5*pi/180]);
|
||||
[graph,initial] = load2D(datafile, model);
|
||||
|
||||
%% Add a Gaussian prior on pose x_0
|
||||
priorMean = Pose2(0, 0, 0);
|
||||
priorNoise = noiseModel.Diagonal.Sigmas([0.01; 0.01; 0.01]);
|
||||
graph.add(PriorFactorPose2(0, priorMean, priorNoise));
|
||||
|
||||
%% Optimize using Levenberg-Marquardt optimization and get marginals
|
||||
optimizer = LevenbergMarquardtOptimizer(graph, initial);
|
||||
result = optimizer.optimizeSafely;
|
||||
marginals = Marginals(graph, result);
|
||||
|
|
@ -0,0 +1,16 @@
|
|||
NonlinearFactorGraph graph;
|
||||
noiseModel::Diagonal::shared_ptr priorNoise =
|
||||
noiseModel::Diagonal::Sigmas(Vector3(0.3, 0.3, 0.1));
|
||||
graph.add(PriorFactor<Pose2>(1, Pose2(0, 0, 0), priorNoise));
|
||||
|
||||
// Add odometry factors
|
||||
noiseModel::Diagonal::shared_ptr model =
|
||||
noiseModel::Diagonal::Sigmas(Vector3(0.2, 0.2, 0.1));
|
||||
graph.add(BetweenFactor<Pose2>(1, 2, Pose2(2, 0, 0 ), model));
|
||||
graph.add(BetweenFactor<Pose2>(2, 3, Pose2(2, 0, M_PI_2), model));
|
||||
graph.add(BetweenFactor<Pose2>(3, 4, Pose2(2, 0, M_PI_2), model));
|
||||
graph.add(BetweenFactor<Pose2>(4, 5, Pose2(2, 0, M_PI_2), model));
|
||||
|
||||
// Add the loop closure constraint
|
||||
graph.add(BetweenFactor<Pose2>(5, 2, Pose2(2, 0, M_PI_2), model));
|
||||
|
|
@ -0,0 +1,14 @@
|
|||
graph = NonlinearFactorGraph;
|
||||
priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.1]);
|
||||
graph.add(PriorFactorPose2(1, Pose2(0, 0, 0), priorNoise));
|
||||
|
||||
%% Add odometry factors
|
||||
model = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]);
|
||||
graph.add(BetweenFactorPose2(1, 2, Pose2(2, 0, 0 ), model));
|
||||
graph.add(BetweenFactorPose2(2, 3, Pose2(2, 0, pi/2), model));
|
||||
graph.add(BetweenFactorPose2(3, 4, Pose2(2, 0, pi/2), model));
|
||||
graph.add(BetweenFactorPose2(4, 5, Pose2(2, 0, pi/2), model));
|
||||
|
||||
%% Add pose constraint
|
||||
graph.add(BetweenFactorPose2(5, 2, Pose2(2, 0, pi/2), model));
|
||||
|
|
@ -0,0 +1,12 @@
|
|||
%% Initialize graph, initial estimate, and odometry noise
|
||||
datafile = findExampleDataFile('sphere2500.txt');
|
||||
model = noiseModel.Diagonal.Sigmas([5*pi/180; 5*pi/180; 5*pi/180; 0.05; 0.05; 0.05]);
|
||||
[graph,initial] = load3D(datafile, model, true, 2500);
|
||||
plot3DTrajectory(initial, 'g-', false); % Plot Initial Estimate
|
||||
|
||||
%% Read again, now with all constraints, and optimize
|
||||
graph = load3D(datafile, model, false, 2500);
|
||||
graph.add(NonlinearEqualityPose3(0, initial.atPose3(0)));
|
||||
optimizer = LevenbergMarquardtOptimizer(graph, initial);
|
||||
result = optimizer.optimizeSafely();
|
||||
plot3DTrajectory(result, 'r-', false); axis equal;
|
|
@ -0,0 +1,9 @@
|
|||
%% Add factors for all measurements
|
||||
noise = noiseModel.Isotropic.Sigma(2, measurementNoiseSigma);
|
||||
for i = 1:length(Z),
|
||||
for k = 1:length(Z{i})
|
||||
j = J{i}{k};
|
||||
G.add(GenericProjectionFactorCal3_S2(
|
||||
Z{i}{k}, noise, symbol('x', i), symbol('p', j), K));
|
||||
end
|
||||
end
|
|
@ -0,0 +1,24 @@
|
|||
int relinearizeInterval = 3;
|
||||
NonlinearISAM isam(relinearizeInterval);
|
||||
|
||||
// ... first frame initialization omitted ...
|
||||
|
||||
// Loop over the different poses, adding the observations to iSAM
|
||||
for (size_t i = 1; i < poses.size(); ++i) {
|
||||
|
||||
// Add factors for each landmark observation
|
||||
NonlinearFactorGraph graph;
|
||||
for (size_t j = 0; j < points.size(); ++j) {
|
||||
graph.add(
|
||||
GenericProjectionFactor<Pose3, Point3, Cal3_S2>
|
||||
(z[i][j], noise,Symbol('x', i), Symbol('l', j), K)
|
||||
);
|
||||
}
|
||||
|
||||
// Add an initial guess for the current pose
|
||||
Values initialEstimate;
|
||||
initialEstimate.insert(Symbol('x', i), initial_x[i]);
|
||||
|
||||
// Update iSAM with the new factors
|
||||
isam.update(graph, initialEstimate);
|
||||
}
|
|
@ -0,0 +1,7 @@
|
|||
>> graph.error(initialEstimate)
|
||||
ans =
|
||||
20.1086
|
||||
|
||||
>> graph.error(result)
|
||||
ans =
|
||||
8.2631e-18
|
|
@ -0,0 +1,23 @@
|
|||
>> priorNoise
|
||||
diagonal sigmas [0.3; 0.3; 0.1];
|
||||
|
||||
>> graph
|
||||
size: 6
|
||||
factor 0: PriorFactor on 1
|
||||
prior mean: (0, 0, 0)
|
||||
noise model: diagonal sigmas [0.3; 0.3; 0.1];
|
||||
factor 1: BetweenFactor(1,2)
|
||||
measured: (2, 0, 0)
|
||||
noise model: diagonal sigmas [0.2; 0.2; 0.1];
|
||||
factor 2: BetweenFactor(2,3)
|
||||
measured: (2, 0, 1.6)
|
||||
noise model: diagonal sigmas [0.2; 0.2; 0.1];
|
||||
factor 3: BetweenFactor(3,4)
|
||||
measured: (2, 0, 1.6)
|
||||
noise model: diagonal sigmas [0.2; 0.2; 0.1];
|
||||
factor 4: BetweenFactor(4,5)
|
||||
measured: (2, 0, 1.6)
|
||||
noise model: diagonal sigmas [0.2; 0.2; 0.1];
|
||||
factor 5: BetweenFactor(5,2)
|
||||
measured: (2, 0, 1.6)
|
||||
noise model: diagonal sigmas [0.2; 0.2; 0.1];
|
|
@ -0,0 +1,7 @@
|
|||
>> whos
|
||||
Name Size Bytes Class
|
||||
graph 1x1 112 gtsam.NonlinearFactorGraph
|
||||
priorNoise 1x1 112 gtsam.noiseModel.Diagonal
|
||||
model 1x1 112 gtsam.noiseModel.Diagonal
|
||||
initialEstimate 1x1 112 gtsam.Values
|
||||
optimizer 1x1 112 gtsam.LevenbergMarquardtOptimizer
|
|
@ -0,0 +1,124 @@
|
|||
\global\long\def\Vector#1{{\bf #1}}
|
||||
\global\long\def\Matrix#1{{\bf #1}}
|
||||
|
||||
|
||||
\global\long\def\eq#1{equation (\ref{eq:=0000231})}
|
||||
|
||||
|
||||
\global\long\def\eye#1{\Vector{I_{#1}}}
|
||||
|
||||
|
||||
\global\long\def\leftsparrow#1{\stackrel{#1}{\leftarrow}}
|
||||
\global\long\def\rightsparrow#1{\stackrel{#1}{\rightarrow}}
|
||||
\global\long\def\chain{\mathcal{M}}
|
||||
|
||||
|
||||
\global\long\def\define{\stackrel{\Delta}{=}}
|
||||
|
||||
|
||||
\global\long\def\argmin#1{\mathop{\textrm{argmin \,}}_{#1}}
|
||||
|
||||
|
||||
\global\long\def\Norm#1{\Vert#1\Vert}
|
||||
\global\long\def\SqrNorm#1{\Vert#1\Vert^{2}}
|
||||
\global\long\def\Ltwo#1{\mathcal{L}^{2}\left(#1\right)}
|
||||
|
||||
|
||||
\global\long\def\Normal#1#2#3{\mathcal{N}(#1;#2,#3)}
|
||||
|
||||
|
||||
\global\long\def\LogNormal#1#2#3{ (#1-#2)^{T} #3^{-1} (#1-#2) }
|
||||
|
||||
|
||||
\global\long\def\SqrMah#1#2#3{\Vert{#1}-{#2}\Vert_{#3}^{2}}
|
||||
|
||||
|
||||
\global\long\def\SqrZMah#1#2{\Vert{#1}\Vert_{#2}^{2}}
|
||||
|
||||
|
||||
\global\long\def\Info#1#2#3{\mathcal{N}^{-1}(#1;#2,#3)}
|
||||
|
||||
|
||||
\providecommand{\half}{\frac{1}{2}}
|
||||
|
||||
\global\long\def\Mah#1#2#3{\Vert{#1}-{#2}\Vert_{#3}}
|
||||
\global\long\def\MahDeriv#1#2#3#4{\biggl(\deriv{#2}{#4}\biggr)^{T} #3^{-1} (#1-#2)}
|
||||
|
||||
|
||||
\global\long\def\argmin#1{\mathop{\textrm{argmin \,}}_{#1}}
|
||||
\global\long\def\argmax#1{\mathop{\textrm{argmax \,}}_{#1}}
|
||||
|
||||
|
||||
|
||||
|
||||
\global\long\def\deriv#1#2{\frac{\partial#1}{\partial#2}}
|
||||
|
||||
|
||||
\global\long\def\at#1#2{#1\biggr\rvert_{#2}}
|
||||
|
||||
|
||||
\global\long\def\Jac#1#2#3{ \at{\deriv{#1}{#2}} {#3} }
|
||||
|
||||
|
||||
|
||||
|
||||
\global\long\def\Rone{\mathbb{R}}
|
||||
\global\long\def\Pone{\mathbb{P}}
|
||||
|
||||
|
||||
\global\long\def\Rtwo{\mathbb{R}^{2}}
|
||||
\global\long\def\Ptwo{\mathbb{P}^{2}}
|
||||
|
||||
|
||||
\global\long\def\Stwo{\mathbb{S}^{2}}
|
||||
\global\long\def\Complex{\mathbb{C}}
|
||||
|
||||
|
||||
\global\long\def\Z{\mathbb{Z}}
|
||||
\global\long\def\Rplus{\mathbb{R}^{+}}
|
||||
|
||||
|
||||
\global\long\def\SOtwo{SO(2)}
|
||||
\global\long\def\sotwo{\mathfrak{so(2)}}
|
||||
\global\long\def\skew#1{[#1]_{+}}
|
||||
|
||||
|
||||
\global\long\def\SEtwo{SE(2)}
|
||||
\global\long\def\setwo{\mathfrak{se(2)}}
|
||||
\global\long\def\Skew#1{[#1]_{\times}}
|
||||
|
||||
|
||||
\global\long\def\Rthree{\mathbb{R}^{3}}
|
||||
\global\long\def\Pthree{\mathbb{P}^{3}}
|
||||
|
||||
|
||||
\global\long\def\SOthree{SO(3)}
|
||||
\global\long\def\sothree{\mathfrak{so(3)}}
|
||||
|
||||
|
||||
\global\long\def\Rsix{\mathbb{R}^{6}}
|
||||
\global\long\def\SEthree{SE(3)}
|
||||
\global\long\def\sethree{\mathfrak{se(3)}}
|
||||
|
||||
|
||||
\global\long\def\Rn{\mathbb{R}^{n}}
|
||||
|
||||
|
||||
\global\long\def\Afftwo{Aff(2)}
|
||||
\global\long\def\afftwo{\mathfrak{aff(2)}}
|
||||
|
||||
|
||||
\global\long\def\SLthree{SL(3)}
|
||||
\global\long\def\slthree{\mathfrak{sl(3)}}
|
||||
|
||||
|
||||
|
||||
|
||||
\global\long\def\stirling#1#2{\genfrac{\{}{\}}{0pt}{}{#1}{#2}}
|
||||
|
||||
|
||||
\global\long\def\matlabscript#1#2{\begin{itemize}\item[]\lstinputlisting[caption=#2,label=#1]{#1.m}\end{itemize}}
|
||||
|
||||
|
||||
\global\long\def\atan{\mathop{atan2}}
|
||||
|
|
@ -0,0 +1,133 @@
|
|||
@String { ICCV = {Intl. Conf. on Computer Vision (ICCV)} }
|
||||
@String { IROS = {IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS)} }
|
||||
@String { CVPR = {IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)} }
|
||||
@String { IJRR = {Intl. J. of Robotics Research} }
|
||||
@String { RAS = {Robotics and Autonomous Systems} }
|
||||
@String { TRO = {{IEEE} Trans. Robotics} }
|
||||
@String { IT = {{IEEE} Trans. Inform. Theory} }
|
||||
@String { ISRR = {Proc. of the Intl. Symp. of Robotics Research (ISRR)} }
|
||||
|
||||
@inproceedings{Davison03iccv,
|
||||
title = {Real-Time Simultaneous Localisation and Mapping with a Single Camera},
|
||||
author = {A.J. Davison},
|
||||
booktitle = ICCV,
|
||||
year = {2003},
|
||||
month = {Oct},
|
||||
pages = {1403-1410}
|
||||
}
|
||||
|
||||
@inproceedings{Dellaert10iros,
|
||||
title = {Subgraph-preconditioned Conjugate Gradient for Large Scale SLAM},
|
||||
author = {F. Dellaert and J. Carlson and V. Ila and K. Ni and C.E. Thorpe},
|
||||
booktitle = IROS,
|
||||
year = {2010},
|
||||
}
|
||||
|
||||
@inproceedings{Dellaert99b,
|
||||
title = {Using the Condensation Algorithm for Robust, Vision-based Mobile Robot Localization},
|
||||
author = {F. Dellaert and D. Fox and W. Burgard and S. Thrun},
|
||||
booktitle = CVPR,
|
||||
year = {1999}
|
||||
}
|
||||
|
||||
@article{Dellaert06ijrr,
|
||||
title = {Square {Root} {SAM}: Simultaneous Localization and Mapping via Square Root Information Smoothing},
|
||||
author = {F. Dellaert and M. Kaess},
|
||||
journal = IJRR,
|
||||
year = {2006},
|
||||
month = {Dec},
|
||||
number = {12},
|
||||
pages = {1181--1203},
|
||||
volume = {25},
|
||||
}
|
||||
|
||||
@article{DurrantWhyte06ram,
|
||||
title = {Simultaneous Localisation and Mapping ({SLAM}): Part {I} The Essential Algorithms},
|
||||
author = {H.F. Durrant-Whyte and T. Bailey},
|
||||
journal = {Robotics \& Automation Magazine},
|
||||
year = {2006},
|
||||
month = {Jun},
|
||||
}
|
||||
|
||||
@inproceedings{Jian11iccv,
|
||||
title = {Generalized Subgraph Preconditioners for Large-Scale Bundle Adjustment},
|
||||
author = {Y.-D. Jian and D. Balcan and F. Dellaert},
|
||||
booktitle = ICCV,
|
||||
year = {2011},
|
||||
}
|
||||
|
||||
@article{Kaess09ras,
|
||||
title = {Covariance Recovery from a Square Root Information Matrix for Data Association},
|
||||
author = {M. Kaess and F. Dellaert},
|
||||
journal = RAS,
|
||||
year = {2009},
|
||||
}
|
||||
|
||||
@article{Kaess12ijrr,
|
||||
title = {{iSAM2}: Incremental Smoothing and Mapping Using the {B}ayes Tree},
|
||||
author = {M. Kaess and H. Johannsson and R. Roberts and V. Ila and J. Leonard and F. Dellaert},
|
||||
journal = IJRR,
|
||||
year = {2012},
|
||||
month = {Feb},
|
||||
pages = {217--236},
|
||||
volume = {31},
|
||||
issue = {2},
|
||||
}
|
||||
|
||||
@article{Kaess08tro,
|
||||
title = {{iSAM}: Incremental Smoothing and Mapping},
|
||||
author = {M. Kaess and A. Ranganathan and F. Dellaert},
|
||||
journal = TRO,
|
||||
year = {2008},
|
||||
month = {Dec},
|
||||
number = {6},
|
||||
pages = {1365-1378},
|
||||
volume = {24},
|
||||
}
|
||||
|
||||
@book{Koller09book,
|
||||
title = {Probabilistic Graphical Models: Principles and Techniques},
|
||||
author = {D. Koller and N. Friedman},
|
||||
publisher = {The MIT Press},
|
||||
year = {2009}
|
||||
}
|
||||
|
||||
@Article{Kschischang01it,
|
||||
title = {Factor Graphs and the Sum-Product Algorithm},
|
||||
Author = {F.R. Kschischang and B.J. Frey and H-A. Loeliger},
|
||||
Journal = IT,
|
||||
Year = {2001},
|
||||
|
||||
Month = {February},
|
||||
Number = {2},
|
||||
Volume = {47}
|
||||
}
|
||||
|
||||
@article{Loeliger04spm,
|
||||
Title = {An Introduction to Factor Graphs},
|
||||
Author = {H.-A. Loeliger},
|
||||
Journal = {IEEE Signal Processing Magazine},
|
||||
Year = {2004},
|
||||
|
||||
Month = {January},
|
||||
Pages = {28--41}
|
||||
}
|
||||
|
||||
@inproceedings{Nister04cvpr2,
|
||||
title = {Visual Odometry},
|
||||
author = {D. Nist\'er and O. Naroditsky and J. Bergen},
|
||||
booktitle = CVPR,
|
||||
year = {2004},
|
||||
month = {Jun},
|
||||
pages = {652-659},
|
||||
volume = {1}
|
||||
}
|
||||
|
||||
@InProceedings{Smith87b,
|
||||
title = {A stochastic map for uncertain spatial relationships},
|
||||
Author = {R. Smith and M. Self and P. Cheeseman},
|
||||
Booktitle = ISRR,
|
||||
Year = {1988},
|
||||
Pages = {467-474}
|
||||
}
|
||||
|
File diff suppressed because it is too large
Load Diff
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -0,0 +1,101 @@
|
|||
%PDF-1.4
|
||||
%Çì<C387>¢
|
||||
5 0 obj
|
||||
<</Length 6 0 R/Filter /FlateDecode>>
|
||||
stream
|
||||
xœÍ˜ÏŠ$7ÆïõuLQlKþw
„œgg °<>
a&°ä<C2B0>×<EFBFBD>ì²,¹«Yº‡Þ!»,ßÈ®Ÿ¿’,Õ~ÝøÝµ¿ãçç·íçOyÿòÏöu1aÙ“‹JÙߦâK"ð~Ýb‰R¸¢Èª×íÏí÷ýï<C3BD> ¶?û¿›ßÿâ¿mµ$@ç÷€!Cʼ¿(1G¶ú>]QdÕëiŸ×íysW÷?¯}>=óíÊ3Ÿob}>íë^ßâúö½K‚ šBNP‹<50>ÑNÁ9(aøõ…߸並<C2A9>Ÿßö_^8J^þØŽñ{%H…Ê‚‡êËþò¶ýð“ƒøãË_Û¯/ÛÓæ)UˆÕRMÅ`
ÍpMEÁn…òÄ VÒ唨d„š-ÑTÑÐÑTÞATPŕȸB*`˜TQ&Ñ”I•û™B (9/L^‰Rd
ÑTÑÐÑTÞA”`Y]òÆ%t)Z—TQ&Ñ”I•û™Ðä´º”ˆ²‡l]RÅ
ÍMåDä äÕ¥`]*ùââQÅ0
Í0MåL%B¢• '…ìøš0Dª(‘hJ¤ÊýDx“D+‘q‰RŽà¬Kª¦¡¦©¼ƒ‰¯Úˆ+M¢èÚ<C3A8>g]RE‰D3-j*÷E^ââ‘qi6ž_ ¿jU–V7£bH
|
||||
-Q·2¾–‚çšæ<O1-%œ‘
|
||||
ÿžÑ
ÒP¤5‘LÔHüÊ+µË¸xp5HþŠO°g‡B‰b¡4J lÔ½>ahçן‘V h‘†² ͨ‰d¢îõ ù"o
ø4
9ì½T¡D±P%P6êæÅAF~iĹÞÖu˜Dü+@k“(ÑŒšD&êæ7硤Py-lN§i`2
|
||||
Ìn™†²0ͨÉd¢îv‰áÐÓÅ40ÇM¾Š X—D±D%D6ê^—"çwNé4
L¦Dž›<C5BE>eÊÂ4£&“‰º×¥˜</¦<>ÿëGÆŸïüT}‚ÏPú×THàÂYн®}¾µÏ+™ÖÉB±3—V¬tN[ÃOßùÓò`#gÀ<Õ
|
||||
ÜêD±Ÿäxħ`>?Èy‚@c°Äæ‹ÞJèjïËöDzîÄãF\œàQe® ”Í^”ù·).{©c²—*ºŸ¯r¥˜(O¥r³†[ÏFÓ(Y§Q<íö<"Ríô%ƒFˆ¦Q²N£xÚ‰€d¢ØS¦ëE”h%ë4ªÕžÛ?=ðe>Òµï]_röÈ&¡=>÷ýöù§Ç×M£sqž×qTÌ\Y¢D9ßvçÏÍÐ^|EðÔ•±“£åø
|
||||
ðg%ynBÔFšù’øW€¡+ÃD£„öU³¬â~ÍO%<25>º€¥Ï·ä=a殤6<C2A4>1NAÅ(X9«b0«°òÍQÑlŒ•Úÿ|è³±bO<åÃz™êŒ2ÎiV
/¸AŒaNüÂZzq¿O%/}ÿ˜kq¤Ô¯´G^TP<çð޶i‰píðÓ¢+Až¯å²¥N¢µƒœÇP+µ#Í|FÏø1kÊ£wÇ@7«bºený•Ì"ç8é¼)ÉPË(R‡à|WrO¹#›Â©šÓ|1V‘›NWÉk—<6B>±æ~‹ëÓµpÖ›œA+GÎi•Ã
|
||||
]t˜¥e,~jm©ç’I—ïåCkë‘=þ‘½ôƒŠ‹2uß´º(3Vµ Æ\3Dm»\ÇQ¹t»l”(Rq”s·A+nî4Kƒ2vc´žæKš½išhî9ÚUɹ'UH±¬ÅM1Å=›•(Ú¬Æ"MrÙv–<76><Y+Eè´3É ¬rœÒ¬Nh™Š[ZOê¨$Ï¥ëG:=mÿF3#òendstream
|
||||
endobj
|
||||
6 0 obj
|
||||
1341
|
||||
endobj
|
||||
4 0 obj
|
||||
<</Type/Page/MediaBox [0 0 612 792]
|
||||
/Rotate 0/Parent 3 0 R
|
||||
/Resources<</ProcSet[/PDF /Text]
|
||||
/ExtGState 9 0 R
|
||||
/Font 10 0 R
|
||||
>>
|
||||
/Contents 5 0 R
|
||||
>>
|
||||
endobj
|
||||
3 0 obj
|
||||
<< /Type /Pages /Kids [
|
||||
4 0 R
|
||||
] /Count 1
|
||||
>>
|
||||
endobj
|
||||
1 0 obj
|
||||
<</Type /Catalog /Pages 3 0 R
|
||||
/Metadata 12 0 R
|
||||
>>
|
||||
endobj
|
||||
7 0 obj
|
||||
<</Type/ExtGState
|
||||
/OPM 1>>endobj
|
||||
9 0 obj
|
||||
<</R7
|
||||
7 0 R>>
|
||||
endobj
|
||||
10 0 obj
|
||||
<</R8
|
||||
8 0 R>>
|
||||
endobj
|
||||
8 0 obj
|
||||
<</BaseFont/Helvetica/Type/Font
|
||||
/Encoding 11 0 R/Subtype/Type1>>
|
||||
endobj
|
||||
11 0 obj
|
||||
<</Type/Encoding/Differences[
|
||||
45/minus]>>
|
||||
endobj
|
||||
12 0 obj
|
||||
<</Length 1324>>stream
|
||||
<?xpacket begin='' id='W5M0MpCehiHzreSzNTczkc9d'?>
|
||||
<?adobe-xap-filters esc="CRLF"?>
|
||||
<x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='XMP toolkit 2.9.1-13, framework 1.6'>
|
||||
<rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#' xmlns:iX='http://ns.adobe.com/iX/1.0/'>
|
||||
<rdf:Description rdf:about='6ea0c85a-ec69-11ec-0000-88f4c9fe0d6d' xmlns:pdf='http://ns.adobe.com/pdf/1.3/' pdf:Producer='Artifex Ghostscript 8.54'/>
|
||||
<rdf:Description rdf:about='6ea0c85a-ec69-11ec-0000-88f4c9fe0d6d' xmlns:xap='http://ns.adobe.com/xap/1.0/' xap:ModifyDate='2012-06-12' xap:CreateDate='2012-06-12'><xap:CreatorTool>Artifex Ghostscript 8.54 PDF Writer</xap:CreatorTool></rdf:Description>
|
||||
<rdf:Description rdf:about='6ea0c85a-ec69-11ec-0000-88f4c9fe0d6d' xmlns:xapMM='http://ns.adobe.com/xap/1.0/mm/' xapMM:DocumentID='6ea0c85a-ec69-11ec-0000-88f4c9fe0d6d'/>
|
||||
<rdf:Description rdf:about='6ea0c85a-ec69-11ec-0000-88f4c9fe0d6d' xmlns:dc='http://purl.org/dc/elements/1.1/' dc:format='application/pdf'><dc:title><rdf:Alt><rdf:li xml:lang='x-default'>/private/tmp/tpfd5bb1cf_55d8_447e_8f97_d6b24a262922.ps</rdf:li></rdf:Alt></dc:title></rdf:Description>
|
||||
</rdf:RDF>
|
||||
</x:xmpmeta>
|
||||
|
||||
|
||||
<?xpacket end='w'?>
|
||||
endstream
|
||||
endobj
|
||||
2 0 obj
|
||||
<</Producer(Artifex Ghostscript 8.54)
|
||||
/CreationDate(D:20120612011010)
|
||||
/ModDate(D:20120612011010)
|
||||
/Creator(MATLAB, The MathWorks, Inc. Version 7.13.0.564 \(R2011b\). Operating System: Darwin 11.4.0 Darwin Kernel Version 11.4.0: Mon Apr 9 19:32:15 PDT 2012; root:xnu-1699.26.8~1/RELEASE_X86_64 x86_64.)
|
||||
/Title(/private/tmp/tpfd5bb1cf_55d8_447e_8f97_d6b24a262922.ps)>>endobj
|
||||
xref
|
||||
0 13
|
||||
0000000000 65535 f
|
||||
0000001664 00000 n
|
||||
0000003341 00000 n
|
||||
0000001605 00000 n
|
||||
0000001446 00000 n
|
||||
0000000015 00000 n
|
||||
0000001426 00000 n
|
||||
0000001729 00000 n
|
||||
0000001829 00000 n
|
||||
0000001770 00000 n
|
||||
0000001799 00000 n
|
||||
0000001909 00000 n
|
||||
0000001967 00000 n
|
||||
trailer
|
||||
<< /Size 13 /Root 1 0 R /Info 2 0 R
|
||||
/ID [<0E15732D337F57A9CB2C0954A12E8EF8><0E15732D337F57A9CB2C0954A12E8EF8>]
|
||||
>>
|
||||
startxref
|
||||
3722
|
||||
%%EOF
|
Binary file not shown.
Binary file not shown.
File diff suppressed because one or more lines are too long
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -5189,7 +5189,7 @@ R_{2}^{T}\left[t_{2}-t_{1}\right]_{\times}R_{1} & -R_{2}^{T}R_{1}
|
|||
and in its second argument,
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray*}
|
||||
\frac{\partial\left(T_{1}^{^{-1}}T_{2}\right)}{\partial\xi_{1}} & = & I_{6}
|
||||
\frac{\partial\left(T_{1}^{^{-1}}T_{2}\right)}{\partial\xi_{2}} & = & I_{6}
|
||||
\end{eqnarray*}
|
||||
|
||||
\end_inset
|
||||
|
|
|
@ -0,0 +1,18 @@
|
|||
# Get the base Ubuntu image from Docker Hub
|
||||
FROM ubuntu:bionic
|
||||
|
||||
# Update apps on the base image
|
||||
RUN apt-get -y update && apt-get install -y
|
||||
|
||||
# Install C++
|
||||
RUN apt-get -y install build-essential
|
||||
|
||||
# Install boost and cmake
|
||||
RUN apt-get -y install libboost-all-dev cmake
|
||||
|
||||
# Install TBB
|
||||
RUN apt-get -y install libtbb-dev
|
||||
|
||||
# Install latest Eigen
|
||||
RUN apt-get install -y libeigen3-dev
|
||||
|
|
@ -71,18 +71,14 @@ int main(int argc, char* argv[]) {
|
|||
// add measurement factors
|
||||
SharedDiagonal measurementNoise = Diagonal::Sigmas(Vector2(0.5, 0.5));
|
||||
boost::shared_ptr<ResectioningFactor> factor;
|
||||
graph.push_back(
|
||||
boost::make_shared<ResectioningFactor>(measurementNoise, X(1), calib,
|
||||
Point2(55, 45), Point3(10, 10, 0)));
|
||||
graph.push_back(
|
||||
boost::make_shared<ResectioningFactor>(measurementNoise, X(1), calib,
|
||||
Point2(45, 45), Point3(-10, 10, 0)));
|
||||
graph.push_back(
|
||||
boost::make_shared<ResectioningFactor>(measurementNoise, X(1), calib,
|
||||
Point2(45, 55), Point3(-10, -10, 0)));
|
||||
graph.push_back(
|
||||
boost::make_shared<ResectioningFactor>(measurementNoise, X(1), calib,
|
||||
Point2(55, 55), Point3(10, -10, 0)));
|
||||
graph.emplace_shared<ResectioningFactor>(measurementNoise, X(1), calib,
|
||||
Point2(55, 45), Point3(10, 10, 0));
|
||||
graph.emplace_shared<ResectioningFactor>(measurementNoise, X(1), calib,
|
||||
Point2(45, 45), Point3(-10, 10, 0));
|
||||
graph.emplace_shared<ResectioningFactor>(measurementNoise, X(1), calib,
|
||||
Point2(45, 55), Point3(-10, -10, 0));
|
||||
graph.emplace_shared<ResectioningFactor>(measurementNoise, X(1), calib,
|
||||
Point2(55, 55), Point3(10, -10, 0));
|
||||
|
||||
/* 3. Create an initial estimate for the camera pose */
|
||||
Values initial;
|
||||
|
|
|
@ -0,0 +1,120 @@
|
|||
/**
|
||||
* @file ISAM2Example_SmartFactor.cpp
|
||||
* @brief test of iSAM with smart factors, led to bitbucket issue #367
|
||||
* @author Alexander (pumaking on BitBucket)
|
||||
*/
|
||||
|
||||
#include <gtsam/geometry/SimpleCamera.h>
|
||||
#include <gtsam/nonlinear/ISAM2.h>
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
#include <gtsam/slam/SmartProjectionPoseFactor.h>
|
||||
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
using symbol_shorthand::P;
|
||||
using symbol_shorthand::X;
|
||||
|
||||
// Make the typename short so it looks much cleaner
|
||||
typedef SmartProjectionPoseFactor<Cal3_S2> SmartFactor;
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0));
|
||||
|
||||
auto measurementNoise =
|
||||
noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v
|
||||
|
||||
Vector6 sigmas;
|
||||
sigmas << Vector3::Constant(0.3), Vector3::Constant(0.1);
|
||||
auto noise = noiseModel::Diagonal::Sigmas(sigmas);
|
||||
|
||||
ISAM2Params parameters;
|
||||
parameters.relinearizeThreshold = 0.01;
|
||||
parameters.relinearizeSkip = 1;
|
||||
parameters.cacheLinearizedFactors = false;
|
||||
parameters.enableDetailedResults = true;
|
||||
parameters.print();
|
||||
ISAM2 isam(parameters);
|
||||
|
||||
// Create a factor graph
|
||||
NonlinearFactorGraph graph;
|
||||
Values initialEstimate;
|
||||
|
||||
Point3 point(0.0, 0.0, 1.0);
|
||||
|
||||
// Intentionally initialize the variables off from the ground truth
|
||||
Pose3 delta(Rot3::Rodrigues(0.0, 0.0, 0.0), Point3(0.05, -0.10, 0.20));
|
||||
|
||||
Pose3 pose1(Rot3(), Point3(0.0, 0.0, 0.0));
|
||||
Pose3 pose2(Rot3(), Point3(0.0, 0.2, 0.0));
|
||||
Pose3 pose3(Rot3(), Point3(0.0, 0.4, 0.0));
|
||||
Pose3 pose4(Rot3(), Point3(0.0, 0.5, 0.0));
|
||||
Pose3 pose5(Rot3(), Point3(0.0, 0.6, 0.0));
|
||||
|
||||
vector<Pose3> poses = {pose1, pose2, pose3, pose4, pose5};
|
||||
|
||||
// Add first pose
|
||||
graph.emplace_shared<PriorFactor<Pose3>>(X(0), poses[0], noise);
|
||||
initialEstimate.insert(X(0), poses[0].compose(delta));
|
||||
|
||||
// Create smart factor with measurement from first pose only
|
||||
SmartFactor::shared_ptr smartFactor(new SmartFactor(measurementNoise, K));
|
||||
smartFactor->add(PinholePose<Cal3_S2>(poses[0], K).project(point), X(0));
|
||||
graph.push_back(smartFactor);
|
||||
|
||||
// loop over remaining poses
|
||||
for (size_t i = 1; i < 5; i++) {
|
||||
cout << "****************************************************" << endl;
|
||||
cout << "i = " << i << endl;
|
||||
|
||||
// Add prior on new pose
|
||||
graph.emplace_shared<PriorFactor<Pose3>>(X(i), poses[i], noise);
|
||||
initialEstimate.insert(X(i), poses[i].compose(delta));
|
||||
|
||||
// "Simulate" measurement from this pose
|
||||
PinholePose<Cal3_S2> camera(poses[i], K);
|
||||
Point2 measurement = camera.project(point);
|
||||
cout << "Measurement " << i << "" << measurement << endl;
|
||||
|
||||
// Add measurement to smart factor
|
||||
smartFactor->add(measurement, X(i));
|
||||
|
||||
// Update iSAM2
|
||||
ISAM2Result result = isam.update(graph, initialEstimate);
|
||||
result.print();
|
||||
|
||||
cout << "Detailed results:" << endl;
|
||||
for (auto keyedStatus : result.detail->variableStatus) {
|
||||
const auto& status = keyedStatus.second;
|
||||
PrintKey(keyedStatus.first);
|
||||
cout << " {" << endl;
|
||||
cout << "reeliminated: " << status.isReeliminated << endl;
|
||||
cout << "relinearized above thresh: " << status.isAboveRelinThreshold
|
||||
<< endl;
|
||||
cout << "relinearized involved: " << status.isRelinearizeInvolved << endl;
|
||||
cout << "relinearized: " << status.isRelinearized << endl;
|
||||
cout << "observed: " << status.isObserved << endl;
|
||||
cout << "new: " << status.isNew << endl;
|
||||
cout << "in the root clique: " << status.inRootClique << endl;
|
||||
cout << "}" << endl;
|
||||
}
|
||||
|
||||
Values currentEstimate = isam.calculateEstimate();
|
||||
currentEstimate.print("Current estimate: ");
|
||||
|
||||
boost::optional<Point3> pointEstimate = smartFactor->point(currentEstimate);
|
||||
if (pointEstimate) {
|
||||
cout << *pointEstimate << endl;
|
||||
} else {
|
||||
cout << "Point degenerate." << endl;
|
||||
}
|
||||
|
||||
// Reset graph and initial estimate for next iteration
|
||||
graph.resize(0);
|
||||
initialEstimate.clear();
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
|
@ -0,0 +1,134 @@
|
|||
|
||||
#include <gtsam/geometry/SimpleCamera.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam/navigation/ImuBias.h>
|
||||
#include <gtsam/navigation/ImuFactor.h>
|
||||
#include <gtsam/navigation/Scenario.h>
|
||||
#include <gtsam/nonlinear/ISAM2.h>
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
|
||||
#include <vector>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
// Shorthand for velocity and pose variables
|
||||
using symbol_shorthand::V;
|
||||
using symbol_shorthand::X;
|
||||
|
||||
const double kGravity = 9.81;
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main(int argc, char* argv[]) {
|
||||
auto params = PreintegrationParams::MakeSharedU(kGravity);
|
||||
params->setAccelerometerCovariance(I_3x3 * 0.1);
|
||||
params->setGyroscopeCovariance(I_3x3 * 0.1);
|
||||
params->setIntegrationCovariance(I_3x3 * 0.1);
|
||||
params->setUse2ndOrderCoriolis(false);
|
||||
params->setOmegaCoriolis(Vector3(0, 0, 0));
|
||||
|
||||
Pose3 delta(Rot3::Rodrigues(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20));
|
||||
|
||||
// Start with a camera on x-axis looking at origin
|
||||
double radius = 30;
|
||||
const Point3 up(0, 0, 1), target(0, 0, 0);
|
||||
const Point3 position(radius, 0, 0);
|
||||
const SimpleCamera camera = SimpleCamera::Lookat(position, target, up);
|
||||
const auto pose_0 = camera.pose();
|
||||
|
||||
// Now, create a constant-twist scenario that makes the camera orbit the
|
||||
// origin
|
||||
double angular_velocity = M_PI, // rad/sec
|
||||
delta_t = 1.0 / 18; // makes for 10 degrees per step
|
||||
Vector3 angular_velocity_vector(0, -angular_velocity, 0);
|
||||
Vector3 linear_velocity_vector(radius * angular_velocity, 0, 0);
|
||||
auto scenario = ConstantTwistScenario(angular_velocity_vector,
|
||||
linear_velocity_vector, pose_0);
|
||||
|
||||
// Create a factor graph
|
||||
NonlinearFactorGraph newgraph;
|
||||
|
||||
// Create (incremental) ISAM2 solver
|
||||
ISAM2 isam;
|
||||
|
||||
// Create the initial estimate to the solution
|
||||
// Intentionally initialize the variables off from the ground truth
|
||||
Values initialEstimate, totalEstimate, result;
|
||||
|
||||
// Add a prior on pose x0. This indirectly specifies where the origin is.
|
||||
// 0.1 rad std on roll, pitch, yaw, 30cm std on x,y,z.
|
||||
auto noise = noiseModel::Diagonal::Sigmas(
|
||||
(Vector(6) << Vector3::Constant(0.1), Vector3::Constant(0.3)).finished());
|
||||
newgraph.push_back(PriorFactor<Pose3>(X(0), pose_0, noise));
|
||||
|
||||
// Add imu priors
|
||||
Key biasKey = Symbol('b', 0);
|
||||
auto biasnoise = noiseModel::Diagonal::Sigmas(Vector6::Constant(0.1));
|
||||
PriorFactor<imuBias::ConstantBias> biasprior(biasKey, imuBias::ConstantBias(),
|
||||
biasnoise);
|
||||
newgraph.push_back(biasprior);
|
||||
initialEstimate.insert(biasKey, imuBias::ConstantBias());
|
||||
auto velnoise = noiseModel::Diagonal::Sigmas(Vector3(0.1, 0.1, 0.1));
|
||||
|
||||
Vector n_velocity(3);
|
||||
n_velocity << 0, angular_velocity * radius, 0;
|
||||
PriorFactor<Vector> velprior(V(0), n_velocity, velnoise);
|
||||
newgraph.push_back(velprior);
|
||||
|
||||
initialEstimate.insert(V(0), n_velocity);
|
||||
|
||||
// IMU preintegrator
|
||||
PreintegratedImuMeasurements accum(params);
|
||||
|
||||
// Simulate poses and imu measurements, adding them to the factor graph
|
||||
for (size_t i = 0; i < 36; ++i) {
|
||||
double t = i * delta_t;
|
||||
if (i == 0) { // First time add two poses
|
||||
auto pose_1 = scenario.pose(delta_t);
|
||||
initialEstimate.insert(X(0), pose_0.compose(delta));
|
||||
initialEstimate.insert(X(1), pose_1.compose(delta));
|
||||
} else if (i >= 2) { // Add more poses as necessary
|
||||
auto pose_i = scenario.pose(t);
|
||||
initialEstimate.insert(X(i), pose_i.compose(delta));
|
||||
}
|
||||
|
||||
if (i > 0) {
|
||||
// Add Bias variables periodically
|
||||
if (i % 5 == 0) {
|
||||
biasKey++;
|
||||
Symbol b1 = biasKey - 1;
|
||||
Symbol b2 = biasKey;
|
||||
Vector6 covvec;
|
||||
covvec << 0.1, 0.1, 0.1, 0.1, 0.1, 0.1;
|
||||
auto cov = noiseModel::Diagonal::Variances(covvec);
|
||||
auto f = boost::make_shared<BetweenFactor<imuBias::ConstantBias> >(
|
||||
b1, b2, imuBias::ConstantBias(), cov);
|
||||
newgraph.add(f);
|
||||
initialEstimate.insert(biasKey, imuBias::ConstantBias());
|
||||
}
|
||||
// Predict acceleration and gyro measurements in (actual) body frame
|
||||
auto measuredAcc = scenario.acceleration_b(t) -
|
||||
scenario.rotation(t).transpose() * params->n_gravity;
|
||||
auto measuredOmega = scenario.omega_b(t);
|
||||
accum.integrateMeasurement(measuredAcc, measuredOmega, delta_t);
|
||||
|
||||
// Add Imu Factor
|
||||
ImuFactor imufac(X(i - 1), V(i - 1), X(i), V(i), biasKey, accum);
|
||||
newgraph.add(imufac);
|
||||
|
||||
// insert new velocity, which is wrong
|
||||
initialEstimate.insert(V(i), n_velocity);
|
||||
accum.resetIntegration();
|
||||
}
|
||||
|
||||
// Incremental solution
|
||||
isam.update(newgraph, initialEstimate);
|
||||
result = isam.calculateEstimate();
|
||||
newgraph = NonlinearFactorGraph();
|
||||
initialEstimate.clear();
|
||||
}
|
||||
GTSAM_PRINT(result);
|
||||
return 0;
|
||||
}
|
||||
/* ************************************************************************* */
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue