DiscreteSearch

release/4.3a0
Frank Dellaert 2025-01-26 22:39:10 -05:00
parent d879b156f8
commit 455554c803
2 changed files with 335 additions and 0 deletions

View File

@ -0,0 +1,276 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/*
* DiscreteSearch.cpp
*
* @date January, 2025
* @author Frank Dellaert
*/
#include <gtsam/discrete/DiscreteBayesNet.h>
namespace gtsam {
using Value = size_t;
/**
* @brief Represents a node in the search tree for discrete search algorithms.
*
* @details Each SearchNode contains a partial assignment of discrete variables,
* the current error, a bound on the final error, and the index of the next
* conditional to be assigned.
*/
struct SearchNode {
DiscreteValues assignment; ///< Partial assignment of discrete variables.
double error; ///< Current error for the partial assignment.
double bound; ///< Lower bound on the final error for unassigned variables.
int nextConditional; ///< Index of the next conditional to be assigned.
struct CompareByBound {
bool operator()(const SearchNode& a, const SearchNode& b) const {
return a.bound > b.bound; // smallest bound -> highest priority
}
};
/**
* @brief Checks if the node represents a complete assignment.
*
* @return True if all variables have been assigned, false otherwise.
*/
bool isComplete() const { return nextConditional < 0; }
/**
* @brief Computes a lower bound on the final error for unassigned variables.
*
* @details This is a stub implementation that returns 0. Real implementations
* might perform partial factor analysis or use heuristics to compute the
* bound.
*
* @return A lower bound on the final error.
*/
double computeBound() const {
// Real code might do partial factor analysis or heuristics.
return 0.0;
}
/**
* @brief Expands the node by assigning the next variable.
*
* @param conditional The discrete conditional representing the next variable
* to be assigned.
* @param fa The frontal assignment for the next variable.
* @return A new SearchNode representing the expanded state.
*/
SearchNode expand(const DiscreteConditional& conditional,
const DiscreteValues& fa) const {
// Combine the new frontal assignment with the current partial assignment
SearchNode child;
child.assignment = assignment;
for (auto& kv : fa) {
child.assignment[kv.first] = kv.second;
}
// Compute the incremental error for this factor
child.error = error + conditional.error(child.assignment);
// Compute new bound
child.bound = computeBound();
// Update the index of the next conditional
child.nextConditional = nextConditional - 1;
return child;
}
/**
* @brief Prints the SearchNode to an output stream.
*
* @param os The output stream.
* @param node The SearchNode to be printed.
* @return The output stream.
*/
friend std::ostream& operator<<(std::ostream& os, const SearchNode& node) {
os << "SearchNode(error=" << node.error << ", bound=" << node.bound << ")";
return os;
}
};
struct Solution {
double error;
DiscreteValues assignment;
Solution(double err, const DiscreteValues& assign)
: error(err), assignment(assign) {}
friend std::ostream& operator<<(std::ostream& os, const Solution& sn) {
os << "[ error=" << sn.error << " assignment={" << sn.assignment << "}]";
return os;
}
};
struct CompareByError {
bool operator()(const Solution& a, const Solution& b) const {
return a.error < b.error;
}
};
// Define the Solutions class
class Solutions {
private:
size_t maxSize_;
std::priority_queue<Solution, std::vector<Solution>, CompareByError> pq_;
public:
Solutions(size_t maxSize) : maxSize_(maxSize) {}
/// Add a solution to the priority queue, possibly evicting the worst one.
/// Return true if we added the solution.
bool maybeAdd(double error, const DiscreteValues& assignment) {
const bool full = pq_.size() == maxSize_;
if (full && error >= pq_.top().error) return false;
if (full) pq_.pop();
pq_.emplace(error, assignment);
return true;
}
/// Check if we have any solutions
bool empty() const { return pq_.empty(); }
// Method to print all solutions
friend std::ostream& operator<<(std::ostream& os, const Solutions& sn) {
auto pq = sn.pq_;
while (!pq.empty()) {
const Solution& best = pq.top();
os << "Error: " << best.error << ", Values: " << best.assignment
<< std::endl;
pq.pop();
}
return os;
}
/// Check if (partial) solution with given bound can be pruned. If we have
/// room, we never prune. Otherwise, prune if lower bound on error is worse
/// than our current worst error.
bool prune(double bound) const {
if (pq_.size() < maxSize_) return false;
double worstError = pq_.top().error;
return (bound >= worstError);
}
// Method to extract solutions in ascending order of error
std::vector<Solution> extractSolutions() {
std::vector<Solution> result;
while (!pq_.empty()) {
result.push_back(pq_.top());
pq_.pop();
}
std::sort(
result.begin(), result.end(),
[](const Solution& a, const Solution& b) { return a.error < b.error; });
return result;
}
};
/**
* DiscreteSearch: Search for the K best solutions.
*/
class DiscreteSearch {
public:
/**
* Construct from a DiscreteBayesNet and K.
*/
DiscreteSearch(const DiscreteBayesNet& bayesNet, size_t K) : solutions_(K) {
// Copy out the conditionals
for (auto& factor : bayesNet) {
conditionals_.push_back(factor);
}
// Calculate the cost-to-go for each conditional. If there are n
// conditionals, we start with nextConditional = n-1, and the minimum error
// obtainable is the sum of all the minimum errors. We start with
// 0, and that is the minimum error of the conditional with that index:
double error = 0.0;
for (const auto& conditional : conditionals_) {
Ordering ordering(conditional->begin(), conditional->end());
auto maxx = conditional->max(ordering);
assert(maxx->size() == 1);
error -= std::log(maxx->evaluate({}));
costToGo_.push_back(error);
}
// Create the root node: no variables assigned, nextConditional = last.
SearchNode root{
.assignment = DiscreteValues(),
.error = 0.0,
.nextConditional = static_cast<int>(conditionals_.size()) - 1};
if (!costToGo_.empty()) root.bound = costToGo_.back();
expansions_.push(root);
}
/**
* @brief Search for the K best solutions.
*
* This method performs a search to find the K best solutions for the given
* DiscreteBayesNet. It uses a priority queue to manage the search nodes,
* expanding nodes with the smallest bound first. The search continues until
* all possible nodes have been expanded or pruned.
*
* @return A vector of the K best solutions found during the search.
*/
std::vector<Solution> run() {
while (!expansions_.empty()) {
expandNextNode();
}
// Extract solutions from bestSolutions in ascending order of error
return solutions_.extractSolutions();
}
private:
void expandNextNode() {
// Pop the partial assignment with the smallest bound
SearchNode current = expansions_.top();
expansions_.pop();
// If we already have K solutions, prune if we cannot beat the worst one.
if (solutions_.prune(current.bound)) {
return;
}
// Check if we have a complete assignment
if (current.isComplete()) {
solutions_.maybeAdd(current.error, current.assignment);
return;
}
// Expand on the next factor
const auto& conditional = conditionals_[current.nextConditional];
for (auto& fa : conditional->frontalAssignments()) {
auto childNode = current.expand(*conditional, fa);
if (childNode.nextConditional >= 0)
childNode.bound =
childNode.error + costToGo_[childNode.nextConditional];
// Again, prune if we cannot beat the worst solution
if (!solutions_.prune(childNode.bound)) {
expansions_.push(childNode);
}
}
}
std::vector<std::shared_ptr<DiscreteConditional>> conditionals_;
std::vector<double> costToGo_;
std::priority_queue<SearchNode, std::vector<SearchNode>,
SearchNode::CompareByBound>
expansions_;
Solutions solutions_;
};
} // namespace gtsam

View File

@ -0,0 +1,59 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/*
* testDiscreteSearch.cpp
*
* @date January, 2025
* @author Frank Dellaert
*/
#include <CppUnitLite/TestHarness.h>
#include <gtsam/base/Testable.h>
#include <gtsam/discrete/DiscreteSearch.h>
#include <algorithm>
#include <cmath>
#include <iostream>
#include <map>
#include <queue>
#include <string>
#include <vector>
#include "AsiaExample.h"
using namespace gtsam;
TEST(DiscreteBayesNet, EmptyKBest) {
DiscreteBayesNet net; // no factors
DiscreteSearch search(net, 3);
auto solutions = search.run();
// Expect one solution with empty assignment, error=0
EXPECT_LONGS_EQUAL(1, solutions.size());
EXPECT_DOUBLES_EQUAL(0, std::fabs(solutions[0].error), 1e-9);
}
TEST(DiscreteBayesNet, AsiaKBest) {
using namespace asia_example;
DiscreteBayesNet asia = createAsiaExample();
DiscreteSearch search(asia, 4);
auto solutions = search.run();
EXPECT(!solutions.empty());
// Regression test: check the first solution
EXPECT_DOUBLES_EQUAL(1.236627, std::fabs(solutions[0].error), 1e-5);
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */