improve tests
parent
8abd2756ea
commit
450fb0a016
|
|
@ -38,6 +38,7 @@ using namespace gtsam;
|
|||
using noiseModel::Isotropic;
|
||||
using symbol_shorthand::M;
|
||||
using symbol_shorthand::X;
|
||||
using symbol_shorthand::Z;
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Check iterators of empty mixture.
|
||||
|
|
@ -199,90 +200,161 @@ TEST(GaussianMixtureFactor, Error) {
|
|||
4.0, mixtureFactor.error({continuousValues, discreteValues}), 1e-9);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Helper function to specify a Hybrid Bayes Net
|
||||
* {P(X1) P(Z1 | X1, X2, M1)} and convert it to a Hybrid Factor Graph
|
||||
* {P(X1)L(X1, X2, M1; Z1)} by converting to likelihoods given Z1.
|
||||
*
|
||||
* We can specify either different means or different sigmas,
|
||||
* or both for each hybrid factor component.
|
||||
*
|
||||
* @param values Initial values for linearization.
|
||||
* @param means The mean values for the conditional components.
|
||||
* @param sigmas Noise model sigma values (standard deviation).
|
||||
* @param m1 The discrete mode key.
|
||||
* @param z1 The measurement value.
|
||||
* @return HybridGaussianFactorGraph
|
||||
*/
|
||||
HybridGaussianFactorGraph GetFactorGraphFromBayesNet(
|
||||
const gtsam::Values &values, const std::vector<double> &means,
|
||||
const std::vector<double> &sigmas, DiscreteKey &m1, double z1 = 0.0) {
|
||||
// Noise models
|
||||
auto model0 = noiseModel::Isotropic::Sigma(1, sigmas[0]);
|
||||
auto model1 = noiseModel::Isotropic::Sigma(1, sigmas[1]);
|
||||
auto prior_noise = noiseModel::Isotropic::Sigma(1, 1e-3);
|
||||
|
||||
// GaussianMixtureFactor component factors
|
||||
auto f0 =
|
||||
std::make_shared<BetweenFactor<double>>(X(1), X(2), means[0], model0);
|
||||
auto f1 =
|
||||
std::make_shared<BetweenFactor<double>>(X(1), X(2), means[1], model1);
|
||||
std::vector<NonlinearFactor::shared_ptr> factors{f0, f1};
|
||||
|
||||
/// Get terms for each p^m(z1 | x1, x2)
|
||||
Matrix H0_1, H0_2, H1_1, H1_2;
|
||||
double x1 = values.at<double>(X(1)), x2 = values.at<double>(X(2));
|
||||
Vector d0 = f0->evaluateError(x1, x2, &H0_1, &H0_2);
|
||||
std::vector<std::pair<Key, Matrix>> terms0 = {{Z(1), gtsam::I_1x1 /*Rx*/},
|
||||
//
|
||||
{X(1), H0_1 /*Sp1*/},
|
||||
{X(2), H0_2 /*Tp2*/}};
|
||||
|
||||
Vector d1 = f1->evaluateError(x1, x2, &H1_1, &H1_2);
|
||||
std::vector<std::pair<Key, Matrix>> terms1 = {{Z(1), gtsam::I_1x1 /*Rx*/},
|
||||
//
|
||||
{X(1), H1_1 /*Sp1*/},
|
||||
{X(2), H1_2 /*Tp2*/}};
|
||||
// Create conditional P(Z1 | X1, X2, M1)
|
||||
auto gm = new gtsam::GaussianMixture(
|
||||
{Z(1)}, {X(1), X(2)}, {m1},
|
||||
{std::make_shared<GaussianConditional>(terms0, 1, -d0, model0),
|
||||
std::make_shared<GaussianConditional>(terms1, 1, -d1, model1)});
|
||||
gtsam::HybridBayesNet bn;
|
||||
bn.emplace_back(gm);
|
||||
// bn.print();
|
||||
|
||||
// Create FG via toFactorGraph
|
||||
gtsam::VectorValues measurements;
|
||||
measurements.insert(Z(1), gtsam::I_1x1 * z1); // Set Z1 = 0
|
||||
HybridGaussianFactorGraph mixture_fg = bn.toFactorGraph(measurements);
|
||||
|
||||
// Linearized prior factor on X1
|
||||
auto prior = PriorFactor<double>(X(1), x1, prior_noise).linearize(values);
|
||||
mixture_fg.push_back(prior);
|
||||
|
||||
return mixture_fg;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Test components with differing means
|
||||
TEST(GaussianMixtureFactor, DifferentMeans) {
|
||||
DiscreteKey m1(M(1), 2), m2(M(2), 2);
|
||||
/**
|
||||
* @brief Test components with differing means.
|
||||
*
|
||||
* We specify a hybrid Bayes network P(Z | X, M) =p(X1)p(Z1 | X1, X2, M1),
|
||||
* which is then converted to a factor graph by specifying Z1.
|
||||
*
|
||||
* p(Z1 | X1, X2, M1) has 2 factors each for the binary mode m1, with only the
|
||||
* means being different.
|
||||
*/
|
||||
TEST(GaussianMixtureFactor, DifferentMeansHBN) {
|
||||
DiscreteKey m1(M(1), 2);
|
||||
|
||||
Values values;
|
||||
double x1 = 0.0, x2 = 1.75, x3 = 2.60;
|
||||
double x1 = 0.0, x2 = 1.75;
|
||||
values.insert(X(1), x1);
|
||||
values.insert(X(2), x2);
|
||||
values.insert(X(3), x3);
|
||||
|
||||
auto model0 = noiseModel::Isotropic::Sigma(1, 1e-0);
|
||||
auto model1 = noiseModel::Isotropic::Sigma(1, 1e-0);
|
||||
auto prior_noise = noiseModel::Isotropic::Sigma(1, 1e-0);
|
||||
// Different means, same sigma
|
||||
std::vector<double> means{0.0, 2.0}, sigmas{1e-0, 1e-0};
|
||||
|
||||
auto f0 = std::make_shared<BetweenFactor<double>>(X(1), X(2), 0.0, model0)
|
||||
->linearize(values);
|
||||
auto f1 = std::make_shared<BetweenFactor<double>>(X(1), X(2), 2.0, model1)
|
||||
->linearize(values);
|
||||
std::vector<GaussianFactor::shared_ptr> factors{f0, f1};
|
||||
|
||||
GaussianMixtureFactor mixtureFactor({X(1), X(2)}, {m1}, factors, true);
|
||||
HybridGaussianFactorGraph hfg;
|
||||
hfg.push_back(mixtureFactor);
|
||||
|
||||
f0 = std::make_shared<BetweenFactor<double>>(X(2), X(3), 0.0, model0)
|
||||
->linearize(values);
|
||||
f1 = std::make_shared<BetweenFactor<double>>(X(2), X(3), 2.0, model1)
|
||||
->linearize(values);
|
||||
std::vector<GaussianFactor::shared_ptr> factors23{f0, f1};
|
||||
hfg.push_back(GaussianMixtureFactor({X(2), X(3)}, {m2}, factors23, true));
|
||||
|
||||
auto prior = PriorFactor<double>(X(1), x1, prior_noise).linearize(values);
|
||||
hfg.push_back(prior);
|
||||
|
||||
hfg.push_back(PriorFactor<double>(X(2), 2.0, prior_noise).linearize(values));
|
||||
|
||||
auto bn = hfg.eliminateSequential();
|
||||
HybridValues actual = bn->optimize();
|
||||
|
||||
HybridValues expected(
|
||||
VectorValues{
|
||||
{X(1), Vector1(0.0)}, {X(2), Vector1(0.25)}, {X(3), Vector1(-0.6)}},
|
||||
DiscreteValues{{M(1), 1}, {M(2), 0}});
|
||||
|
||||
EXPECT(assert_equal(expected, actual));
|
||||
HybridGaussianFactorGraph hfg =
|
||||
GetFactorGraphFromBayesNet(values, means, sigmas, m1, 0.0);
|
||||
|
||||
{
|
||||
DiscreteValues dv{{M(1), 0}, {M(2), 0}};
|
||||
VectorValues cont = bn->optimize(dv);
|
||||
double error = bn->error(HybridValues(cont, dv));
|
||||
// regression
|
||||
EXPECT_DOUBLES_EQUAL(1.77418393408, error, 1e-9);
|
||||
// With no measurement on X2, each mode should be equally likely
|
||||
auto bn = hfg.eliminateSequential();
|
||||
HybridValues actual = bn->optimize();
|
||||
|
||||
HybridValues expected(
|
||||
VectorValues{{X(1), Vector1(0.0)}, {X(2), Vector1(-1.75)}},
|
||||
DiscreteValues{{M(1), 0}});
|
||||
|
||||
EXPECT(assert_equal(expected, actual));
|
||||
|
||||
{
|
||||
DiscreteValues dv{{M(1), 0}};
|
||||
VectorValues cont = bn->optimize(dv);
|
||||
double error = bn->error(HybridValues(cont, dv));
|
||||
// regression
|
||||
EXPECT_DOUBLES_EQUAL(0.69314718056, error, 1e-9);
|
||||
}
|
||||
{
|
||||
DiscreteValues dv{{M(1), 1}};
|
||||
VectorValues cont = bn->optimize(dv);
|
||||
double error = bn->error(HybridValues(cont, dv));
|
||||
// regression
|
||||
EXPECT_DOUBLES_EQUAL(0.69314718056, error, 1e-9);
|
||||
}
|
||||
}
|
||||
{
|
||||
DiscreteValues dv{{M(1), 0}, {M(2), 1}};
|
||||
VectorValues cont = bn->optimize(dv);
|
||||
double error = bn->error(HybridValues(cont, dv));
|
||||
// regression
|
||||
EXPECT_DOUBLES_EQUAL(1.77418393408, error, 1e-9);
|
||||
}
|
||||
{
|
||||
DiscreteValues dv{{M(1), 1}, {M(2), 0}};
|
||||
VectorValues cont = bn->optimize(dv);
|
||||
double error = bn->error(HybridValues(cont, dv));
|
||||
// regression
|
||||
EXPECT_DOUBLES_EQUAL(1.10751726741, error, 1e-9);
|
||||
}
|
||||
{
|
||||
DiscreteValues dv{{M(1), 1}, {M(2), 1}};
|
||||
VectorValues cont = bn->optimize(dv);
|
||||
double error = bn->error(HybridValues(cont, dv));
|
||||
// regression
|
||||
EXPECT_DOUBLES_EQUAL(1.10751726741, error, 1e-9);
|
||||
// If we add a measurement on X2, we have more information to work with.
|
||||
// Add a measurement on X2
|
||||
auto prior_noise = noiseModel::Isotropic::Sigma(1, 1e-3);
|
||||
GaussianConditional meas_z2(Z(2), Vector1(2.0), I_1x1, X(2), I_1x1,
|
||||
prior_noise);
|
||||
auto prior_x2 = meas_z2.likelihood(Vector1(x2));
|
||||
|
||||
hfg.push_back(prior_x2);
|
||||
|
||||
auto bn = hfg.eliminateSequential();
|
||||
HybridValues actual = bn->optimize();
|
||||
|
||||
HybridValues expected(
|
||||
VectorValues{{X(1), Vector1(0.0)}, {X(2), Vector1(0.25)}},
|
||||
DiscreteValues{{M(1), 1}});
|
||||
|
||||
EXPECT(assert_equal(expected, actual));
|
||||
|
||||
{
|
||||
DiscreteValues dv{{M(1), 0}};
|
||||
VectorValues cont = bn->optimize(dv);
|
||||
double error = bn->error(HybridValues(cont, dv));
|
||||
// regression
|
||||
EXPECT_DOUBLES_EQUAL(2.12692448787, error, 1e-9);
|
||||
}
|
||||
{
|
||||
DiscreteValues dv{{M(1), 1}};
|
||||
VectorValues cont = bn->optimize(dv);
|
||||
double error = bn->error(HybridValues(cont, dv));
|
||||
// regression
|
||||
EXPECT_DOUBLES_EQUAL(0.126928487854, error, 1e-9);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* @brief Test components with differing covariances.
|
||||
* The factor graph is
|
||||
* *-X1-*-X2
|
||||
* |
|
||||
* M1
|
||||
* @brief Test components with differing covariances
|
||||
* but with a Bayes net P(Z|X, M) converted to a FG.
|
||||
*/
|
||||
TEST(GaussianMixtureFactor, DifferentCovariances) {
|
||||
DiscreteKey m1(M(1), 2);
|
||||
|
|
@ -292,123 +364,9 @@ TEST(GaussianMixtureFactor, DifferentCovariances) {
|
|||
values.insert(X(1), x1);
|
||||
values.insert(X(2), x2);
|
||||
|
||||
double between = 0.0;
|
||||
|
||||
auto model0 = noiseModel::Isotropic::Sigma(1, 1e2);
|
||||
auto model1 = noiseModel::Isotropic::Sigma(1, 1e-2);
|
||||
auto prior_noise = noiseModel::Isotropic::Sigma(1, 1e-3);
|
||||
|
||||
auto f0 =
|
||||
std::make_shared<BetweenFactor<double>>(X(1), X(2), between, model0);
|
||||
auto f1 =
|
||||
std::make_shared<BetweenFactor<double>>(X(1), X(2), between, model1);
|
||||
std::vector<NonlinearFactor::shared_ptr> factors{f0, f1};
|
||||
|
||||
// Create via toFactorGraph
|
||||
using symbol_shorthand::Z;
|
||||
Matrix H0_1, H0_2, H1_1, H1_2;
|
||||
Vector d0 = f0->evaluateError(x1, x2, &H0_1, &H0_2);
|
||||
std::vector<std::pair<Key, Matrix>> terms0 = {{Z(1), gtsam::I_1x1 /*Rx*/},
|
||||
//
|
||||
{X(1), H0_1 /*Sp1*/},
|
||||
{X(2), H0_2 /*Tp2*/}};
|
||||
|
||||
Vector d1 = f1->evaluateError(x1, x2, &H1_1, &H1_2);
|
||||
std::vector<std::pair<Key, Matrix>> terms1 = {{Z(1), gtsam::I_1x1 /*Rx*/},
|
||||
//
|
||||
{X(1), H1_1 /*Sp1*/},
|
||||
{X(2), H1_2 /*Tp2*/}};
|
||||
gtsam::GaussianMixtureFactor gmf(
|
||||
{X(1), X(2)}, {m1},
|
||||
{std::make_shared<JacobianFactor>(X(1), H0_1, X(2), H0_2, -d0, model0),
|
||||
std::make_shared<JacobianFactor>(X(1), H1_1, X(2), H1_2, -d1, model1)},
|
||||
true);
|
||||
|
||||
// Create FG with single GaussianMixtureFactor
|
||||
HybridGaussianFactorGraph mixture_fg;
|
||||
mixture_fg.add(gmf);
|
||||
|
||||
// Linearized prior factor on X1
|
||||
auto prior = PriorFactor<double>(X(1), x1, prior_noise).linearize(values);
|
||||
mixture_fg.push_back(prior);
|
||||
|
||||
auto hbn = mixture_fg.eliminateSequential();
|
||||
// hbn->print();
|
||||
|
||||
VectorValues cv;
|
||||
cv.insert(X(1), Vector1(0.0));
|
||||
cv.insert(X(2), Vector1(0.0));
|
||||
|
||||
// Check that the error values at the MLE point μ.
|
||||
AlgebraicDecisionTree<Key> errorTree = hbn->errorTree(cv);
|
||||
|
||||
DiscreteValues dv0{{M(1), 0}};
|
||||
DiscreteValues dv1{{M(1), 1}};
|
||||
|
||||
// regression
|
||||
EXPECT_DOUBLES_EQUAL(9.90348755254, errorTree(dv0), 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(0.69314718056, errorTree(dv1), 1e-9);
|
||||
|
||||
DiscreteConditional expected_m1(m1, "0.5/0.5");
|
||||
DiscreteConditional actual_m1 = *(hbn->at(2)->asDiscrete());
|
||||
|
||||
EXPECT(assert_equal(expected_m1, actual_m1));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* @brief Test components with differing covariances
|
||||
* but with a Bayes net P(Z|X, M) converted to a FG.
|
||||
*/
|
||||
TEST(GaussianMixtureFactor, DifferentCovariances2) {
|
||||
DiscreteKey m1(M(1), 2);
|
||||
|
||||
Values values;
|
||||
double x1 = 1.0, x2 = 1.0;
|
||||
values.insert(X(1), x1);
|
||||
values.insert(X(2), x2);
|
||||
|
||||
double between = 0.0;
|
||||
|
||||
auto model0 = noiseModel::Isotropic::Sigma(1, 1e2);
|
||||
auto model1 = noiseModel::Isotropic::Sigma(1, 1e-2);
|
||||
auto prior_noise = noiseModel::Isotropic::Sigma(1, 1e-3);
|
||||
|
||||
auto f0 =
|
||||
std::make_shared<BetweenFactor<double>>(X(1), X(2), between, model0);
|
||||
auto f1 =
|
||||
std::make_shared<BetweenFactor<double>>(X(1), X(2), between, model1);
|
||||
std::vector<NonlinearFactor::shared_ptr> factors{f0, f1};
|
||||
|
||||
// Create via toFactorGraph
|
||||
using symbol_shorthand::Z;
|
||||
Matrix H0_1, H0_2, H1_1, H1_2;
|
||||
Vector d0 = f0->evaluateError(x1, x2, &H0_1, &H0_2);
|
||||
std::vector<std::pair<Key, Matrix>> terms0 = {{Z(1), gtsam::I_1x1 /*Rx*/},
|
||||
//
|
||||
{X(1), H0_1 /*Sp1*/},
|
||||
{X(2), H0_2 /*Tp2*/}};
|
||||
|
||||
Vector d1 = f1->evaluateError(x1, x2, &H1_1, &H1_2);
|
||||
std::vector<std::pair<Key, Matrix>> terms1 = {{Z(1), gtsam::I_1x1 /*Rx*/},
|
||||
//
|
||||
{X(1), H1_1 /*Sp1*/},
|
||||
{X(2), H1_2 /*Tp2*/}};
|
||||
auto gm = new gtsam::GaussianMixture(
|
||||
{Z(1)}, {X(1), X(2)}, {m1},
|
||||
{std::make_shared<GaussianConditional>(terms0, 1, -d0, model0),
|
||||
std::make_shared<GaussianConditional>(terms1, 1, -d1, model1)});
|
||||
gtsam::HybridBayesNet bn;
|
||||
bn.emplace_back(gm);
|
||||
|
||||
gtsam::VectorValues measurements;
|
||||
measurements.insert(Z(1), gtsam::Z_1x1);
|
||||
// Create FG with single GaussianMixtureFactor
|
||||
HybridGaussianFactorGraph mixture_fg = bn.toFactorGraph(measurements);
|
||||
|
||||
// Linearized prior factor on X1
|
||||
auto prior = PriorFactor<double>(X(1), x1, prior_noise).linearize(values);
|
||||
mixture_fg.push_back(prior);
|
||||
std::vector<double> means{0.0, 0.0}, sigmas{1e2, 1e-2};
|
||||
HybridGaussianFactorGraph mixture_fg =
|
||||
GetFactorGraphFromBayesNet(values, means, sigmas, m1);
|
||||
|
||||
auto hbn = mixture_fg.eliminateSequential();
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue