use helpers coincidentPoint and signedDistances

release/4.3a0
Frank Dellaert 2025-03-22 16:44:21 -04:00
parent 94590a2492
commit 44e692c3e9
1 changed files with 76 additions and 68 deletions

View File

@ -24,8 +24,8 @@ namespace gtsam {
double Chebyshev2::Point(size_t N, int j) {
if (N == 1) return 0.0;
assert(j >= 0 && size_t(j) < N);
const double dtheta = M_PI / (N - 1);
return -cos(dtheta * j);
const double dTheta = M_PI / (N - 1);
return -cos(dTheta * j);
}
double Chebyshev2::Point(size_t N, int j, double a, double b) {
@ -40,9 +40,9 @@ Vector Chebyshev2::Points(size_t N) {
return points;
}
size_t half = N / 2;
const double dtheta = M_PI / (N - 1);
const double dTheta = M_PI / (N - 1);
for (size_t j = 0; j < half; ++j) {
double c = cos(j * dtheta);
double c = cos(j * dTheta);
points(j) = -c;
points(N - 1 - j) = c;
}
@ -59,25 +59,49 @@ Vector Chebyshev2::Points(size_t N, double a, double b) {
return points;
}
Weights Chebyshev2::CalculateWeights(size_t N, double x, double a, double b) {
// Allocate space for weights
Weights weights(N);
// We start by getting distances from x to all Chebyshev points
// as well as getting smallest distance
Weights distances(N);
for (size_t j = 0; j < N; j++) {
const double dj =
x - Point(N, j, a, b); // only thing that depends on [a,b]
if (std::abs(dj) < 1e-12) {
// exceptional case: x coincides with a Chebyshev point
weights.setZero();
weights(j) = 1;
return weights;
namespace {
// Find the index of the Chebyshev point that coincides with x
// within the interval [a, b]. If no such point exists, return nullopt.
static std::optional<size_t> coincidentPoint(size_t N, double x, double a, double b, double tol = 1e-12) {
if (N == 0) return std::nullopt;
if (N == 1) {
double mid = (a + b) / 2;
if (std::abs(x - mid) < tol) return 0;
}
distances(j) = dj;
else {
// Compute normalized value y such that cos(j*dTheta) = y.
double y = 1.0 - 2.0 * (x - a) / (b - a);
if (y < -1.0 || y > 1.0) return std::nullopt;
double dTheta = M_PI / (N - 1);
double jCandidate = std::acos(y) / dTheta;
size_t jRounded = static_cast<size_t>(std::round(jCandidate));
if (std::abs(jCandidate - jRounded) < tol) return jRounded;
}
return std::nullopt;
}
// Get signed distances from x to all Chebyshev points
static Vector signedDistances(size_t N, double x, double a, double b) {
Vector result(N);
const Vector points = Chebyshev2::Points(N, a, b); // only thing that depends on [a,b]
for (size_t j = 0; j < N; j++) {
const double dj = x - points[j];
result(j) = dj;
}
return result;
}
}
Weights Chebyshev2::CalculateWeights(size_t N, double x, double a, double b) {
// We start by getting distances from x to all Chebyshev points
const Vector distances = signedDistances(N, x, a, b);
Weights weights(N);
if (auto j = coincidentPoint(N, x, a, b)) {
// exceptional case: x coincides with a Chebyshev point
weights.setZero();
weights(*j) = 1;
return weights;
}
// Beginning of interval, j = 0, x(0) = a
@ -99,46 +123,32 @@ Weights Chebyshev2::CalculateWeights(size_t N, double x, double a, double b) {
}
Weights Chebyshev2::DerivativeWeights(size_t N, double x, double a, double b) {
// Allocate space for weights
Weights weightDerivatives(N);
// toggle variable so we don't need to use `pow` for -1
double t = -1;
// We start by getting distances from x to all Chebyshev points
// as well as getting smallest distance
Weights distances(N);
for (size_t j = 0; j < N; j++) {
const double dj =
x - Point(N, j, a, b); // only thing that depends on [a,b]
if (std::abs(dj) < 1e-12) {
// exceptional case: x coincides with a Chebyshev point
weightDerivatives.setZero();
// compute the jth row of the differentiation matrix for this point
double cj = (j == 0 || j == N - 1) ? 2. : 1.;
for (size_t k = 0; k < N; k++) {
if (j == 0 && k == 0) {
// we reverse the sign since we order the cheb points from -1 to 1
weightDerivatives(k) = -(cj * (N - 1) * (N - 1) + 1) / 6.0;
} else if (j == N - 1 && k == N - 1) {
// we reverse the sign since we order the cheb points from -1 to 1
weightDerivatives(k) = (cj * (N - 1) * (N - 1) + 1) / 6.0;
} else if (k == j) {
double xj = Point(N, j);
double xj2 = xj * xj;
weightDerivatives(k) = -0.5 * xj / (1 - xj2);
} else {
double xj = Point(N, j);
double xk = Point(N, k);
double ck = (k == 0 || k == N - 1) ? 2. : 1.;
t = ((j + k) % 2) == 0 ? 1 : -1;
weightDerivatives(k) = (cj / ck) * t / (xj - xk);
}
if (auto j = coincidentPoint(N, x, a, b)) {
// exceptional case: x coincides with a Chebyshev point
weightDerivatives.setZero();
// compute the jth row of the differentiation matrix for this point
double cj = (*j == 0 || *j == N - 1) ? 2. : 1.;
for (size_t k = 0; k < N; k++) {
if (*j == 0 && k == 0) {
// we reverse the sign since we order the cheb points from -1 to 1
weightDerivatives(k) = -(cj * (N - 1) * (N - 1) + 1) / 6.0;
} else if (*j == N - 1 && k == N - 1) {
// we reverse the sign since we order the cheb points from -1 to 1
weightDerivatives(k) = (cj * (N - 1) * (N - 1) + 1) / 6.0;
} else if (k == *j) {
double xj = Point(N, *j);
double xj2 = xj * xj;
weightDerivatives(k) = -0.5 * xj / (1 - xj2);
} else {
double xj = Point(N, *j);
double xk = Point(N, k);
double ck = (k == 0 || k == N - 1) ? 2. : 1.;
double t = ((*j + k) % 2) == 0 ? 1 : -1;
weightDerivatives(k) = (cj / ck) * t / (xj - xk);
}
return 2 * weightDerivatives / (b - a);
}
distances(j) = dj;
return 2 * weightDerivatives / (b - a);
}
// This section of code computes the derivative of
@ -150,6 +160,7 @@ Weights Chebyshev2::DerivativeWeights(size_t N, double x, double a, double b) {
double g = 0, k = 0;
double w = 1;
const Vector distances = signedDistances(N, x, a, b);
for (size_t j = 0; j < N; j++) {
if (j == 0 || j == N - 1) {
w = 0.5;
@ -157,7 +168,7 @@ Weights Chebyshev2::DerivativeWeights(size_t N, double x, double a, double b) {
w = 1.0;
}
t = (j % 2 == 0) ? 1 : -1;
double t = (j % 2 == 0) ? 1 : -1;
double c = t / distances(j);
g += w * c;
@ -183,19 +194,16 @@ Weights Chebyshev2::DerivativeWeights(size_t N, double x, double a, double b) {
return weightDerivatives;
}
Chebyshev2::DiffMatrix Chebyshev2::DifferentiationMatrix(size_t N, double a,
double b) {
Chebyshev2::DiffMatrix Chebyshev2::DifferentiationMatrix(size_t N, double a, double b) {
DiffMatrix D(N, N);
if (N == 1) {
D(0, 0) = 1;
return D;
}
// toggle variable so we don't need to use `pow` for -1
double t = -1;
const Vector points = Points(N); // a,b dependence is done at return
for (size_t i = 0; i < N; i++) {
double xi = Point(N, i);
double xi = points(i);
double ci = (i == 0 || i == N - 1) ? 2. : 1.;
for (size_t j = 0; j < N; j++) {
if (i == 0 && j == 0) {
@ -208,9 +216,9 @@ Chebyshev2::DiffMatrix Chebyshev2::DifferentiationMatrix(size_t N, double a,
double xi2 = xi * xi;
D(i, j) = -xi / (2 * (1 - xi2));
} else {
double xj = Point(N, j);
double xj = points(j);
double cj = (j == 0 || j == N - 1) ? 2. : 1.;
t = ((i + j) % 2) == 0 ? 1 : -1;
double t = ((i + j) % 2) == 0 ? 1 : -1;
D(i, j) = (ci / cj) * t / (xi - xj);
}
}