Tedious derivatives, but right from the start!
parent
92c1398cd2
commit
44d03e638e
|
@ -43,8 +43,9 @@ public:
|
|||
|
||||
/// vector of errors returns 1D vector
|
||||
Vector evaluateError(const EssentialMatrix& E, const LieScalar& d,
|
||||
boost::optional<Matrix&> H1 = boost::none, boost::optional<Matrix&> H2 =
|
||||
boost::optional<Matrix&> DE = boost::none, boost::optional<Matrix&> Dd =
|
||||
boost::none) const {
|
||||
|
||||
// We have point x,y in image 1
|
||||
// Given a depth Z, the corresponding 3D point P1 = Z*(x,y,1) = (x,y,1)/d
|
||||
// We then convert to first camera by 2P = 1R2Õ*(P1-1T2)
|
||||
|
@ -52,18 +53,46 @@ public:
|
|||
// 2R1*(P1-1T2) == 2R1*d*(P1-1T2) == 2R1*((x,y,1)-d*1T2)
|
||||
// Note that this is just a homography for d==0
|
||||
Point3 dP1(pA_.x(), pA_.y(), 1);
|
||||
Point3 P2 = E.rotation().unrotate(dP1 - d * E.direction().point3());
|
||||
|
||||
// Project to normalized image coordinates, then uncalibrate
|
||||
const Point2 pn = SimpleCamera::project_to_camera(P2);
|
||||
const Point2 pi = K_.uncalibrate(pn);
|
||||
Point2 reprojectionError(pi - pB_);
|
||||
Point2 pi;
|
||||
if (!DE && !Dd) {
|
||||
Point3 d1T2 = d * E.direction().point3();
|
||||
Point3 dP2 = E.rotation().unrotate(dP1 - d1T2);
|
||||
Point2 pn = SimpleCamera::project_to_camera(dP2);
|
||||
pi = K_.uncalibrate(pn);
|
||||
} else {
|
||||
// TODO, clean up this expensive mess w Mathematica
|
||||
Matrix D_1T2_dir; // 3*2
|
||||
Point3 _1T2 = E.direction().point3(D_1T2_dir);
|
||||
|
||||
if (H1)
|
||||
*H1 = zeros(2, 5);
|
||||
if (H2)
|
||||
*H2 = zeros(2, 1);
|
||||
Matrix Dd1T2_dir = d * D_1T2_dir; // 3*2
|
||||
Matrix Dd1T2_d = _1T2.vector(); // 3*1
|
||||
Point3 d1T2 = d * _1T2;
|
||||
|
||||
Matrix Dpoint_dir = -Dd1T2_dir; // 3*2
|
||||
Matrix Dpoint_d = -Dd1T2_d; // 3*1
|
||||
Point3 point = dP1 - d1T2;
|
||||
|
||||
Matrix DdP2_rot, DP2_point;
|
||||
Point3 dP2 = E.rotation().unrotate(point, DdP2_rot, DP2_point);
|
||||
Matrix DdP2_E(3, 5);
|
||||
DdP2_E << DdP2_rot, DP2_point * Dpoint_dir; // (3*3), (3*3) * (3*2)
|
||||
Matrix DdP2_d = DP2_point * Dpoint_d; // (3*3) * (3*1)
|
||||
|
||||
Matrix Dpn_dP2; // 2*3
|
||||
Point2 pn = SimpleCamera::project_to_camera(dP2, Dpn_dP2);
|
||||
Matrix Dpn_E = Dpn_dP2 * DdP2_E; // (2*3) * (3*5)
|
||||
Matrix Dpn_d = Dpn_dP2 * DdP2_d; // (2*3) * (3*1)
|
||||
|
||||
Matrix Dpi_pn; // 2*2
|
||||
pi = K_.uncalibrate(pn, boost::none, Dpi_pn);
|
||||
if (DE)
|
||||
*DE = Dpi_pn * Dpn_E; // (2*2) * (2*5)
|
||||
if (Dd)
|
||||
*Dd = Dpi_pn * Dpn_d; // (2*2) * (2*1)
|
||||
}
|
||||
Point2 reprojectionError = pi - pB_;
|
||||
return reprojectionError.vector();
|
||||
}
|
||||
|
||||
|
@ -236,17 +265,17 @@ TEST (EssentialMatrixFactor2, factor) {
|
|||
Vector actual = factor.evaluateError(E, d, Hactual1, Hactual2);
|
||||
EXPECT(assert_equal(expected, actual, 1e-7));
|
||||
|
||||
// // Use numerical derivatives to calculate the expected Jacobian
|
||||
// Matrix Hexpected1, Hexpected2;
|
||||
// boost::function<Vector(const EssentialMatrix&, const LieScalar&)> f =
|
||||
// boost::bind(&EssentialMatrixFactor2::evaluateError, &factor, _1, _2,
|
||||
// boost::none, boost::none);
|
||||
// Hexpected1 = numericalDerivative21<EssentialMatrix>(f, E, d);
|
||||
// Hexpected2 = numericalDerivative22<EssentialMatrix>(f, E, d);
|
||||
//
|
||||
// // Verify the Jacobian is correct
|
||||
// EXPECT(assert_equal(Hexpected1, Hactual1, 1e-8));
|
||||
// EXPECT(assert_equal(Hexpected2, Hactual2, 1e-8));
|
||||
// Use numerical derivatives to calculate the expected Jacobian
|
||||
Matrix Hexpected1, Hexpected2;
|
||||
boost::function<Vector(const EssentialMatrix&, const LieScalar&)> f =
|
||||
boost::bind(&EssentialMatrixFactor2::evaluateError, &factor, _1, _2,
|
||||
boost::none, boost::none);
|
||||
Hexpected1 = numericalDerivative21<EssentialMatrix>(f, E, d);
|
||||
Hexpected2 = numericalDerivative22<EssentialMatrix>(f, E, d);
|
||||
|
||||
// Verify the Jacobian is correct
|
||||
EXPECT(assert_equal(Hexpected1, Hactual1, 1e-8));
|
||||
EXPECT(assert_equal(Hexpected2, Hactual2, 1e-8));
|
||||
}
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in New Issue