a numerical derivative version for DiscreteEulerPoincare'Factor, but currently disabled.
parent
9e2b11800a
commit
444ab957c4
|
@ -7,6 +7,7 @@
|
|||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/base/numericalDerivative.h>
|
||||
#include <gtsam/geometry/Pose3.h>
|
||||
#include <gtsam/base/LieVector.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactor.h>
|
||||
|
@ -20,6 +21,8 @@ namespace gtsam {
|
|||
* \f$ \xi_k \f$: the body-fixed velocity (Lie algebra)
|
||||
* It is somewhat similar to BetweenFactor, but treats the body-fixed velocity
|
||||
* \f$ \xi_k \f$ as a variable. So it is a three-way factor.
|
||||
* Note: this factor is necessary if one needs to smooth the entire graph. It's not needed
|
||||
* in sequential update method.
|
||||
*/
|
||||
class Reconstruction : public NoiseModelFactor3<Pose3, Pose3, LieVector> {
|
||||
|
||||
|
@ -149,6 +152,52 @@ public:
|
|||
return hx;
|
||||
}
|
||||
|
||||
#if 0
|
||||
Vector computeError(const LieVector& xik, const LieVector& xik_1, const Pose3& gk) const {
|
||||
Vector pk = Pose3::dExpInv_exp(h_*xik).transpose()*Inertia_*xik;
|
||||
Vector pk_1 = Pose3::dExpInv_exp(-h_*xik_1).transpose()*Inertia_*xik_1;
|
||||
|
||||
Point3 gravityBody = gk.rotation().unrotate(Point3(0.0, 0.0, -9.81*m_));
|
||||
Vector f_ext = Vector_(6, 0.0, 0.0, 0.0, gravityBody.x(), gravityBody.y(), gravityBody.z());
|
||||
|
||||
Vector hx = pk - pk_1 - h_*Fu_ - h_*f_ext;
|
||||
|
||||
return hx;
|
||||
}
|
||||
|
||||
Vector evaluateError(const LieVector& xik, const LieVector& xik_1, const Pose3& gk,
|
||||
boost::optional<Matrix&> H1 = boost::none,
|
||||
boost::optional<Matrix&> H2 = boost::none,
|
||||
boost::optional<Matrix&> H3 = boost::none) const {
|
||||
if (H1) {
|
||||
(*H1) = numericalDerivative31(
|
||||
boost::function<Vector(const LieVector&, const LieVector&, const Pose3&)>(
|
||||
boost::bind(&DiscreteEulerPoincareHelicopter::computeError, *this, _1, _2, _3)
|
||||
),
|
||||
xik, xik_1, gk, 1e-5
|
||||
);
|
||||
}
|
||||
if (H2) {
|
||||
(*H2) = numericalDerivative32(
|
||||
boost::function<Vector(const LieVector&, const LieVector&, const Pose3&)>(
|
||||
boost::bind(&DiscreteEulerPoincareHelicopter::computeError, *this, _1, _2, _3)
|
||||
),
|
||||
xik, xik_1, gk, 1e-5
|
||||
);
|
||||
}
|
||||
if (H3) {
|
||||
(*H3) = numericalDerivative33(
|
||||
boost::function<Vector(const LieVector&, const LieVector&, const Pose3&)>(
|
||||
boost::bind(&DiscreteEulerPoincareHelicopter::computeError, *this, _1, _2, _3)
|
||||
),
|
||||
xik, xik_1, gk, 1e-5
|
||||
);
|
||||
}
|
||||
|
||||
return computeError(xik, xik_1, gk);
|
||||
}
|
||||
#endif
|
||||
|
||||
};
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue