a numerical derivative version for DiscreteEulerPoincare'Factor, but currently disabled.

release/4.3a0
Duy-Nguyen Ta 2013-05-01 17:30:21 +00:00
parent 9e2b11800a
commit 444ab957c4
1 changed files with 53 additions and 4 deletions

View File

@ -7,6 +7,7 @@
#pragma once #pragma once
#include <gtsam/base/numericalDerivative.h>
#include <gtsam/geometry/Pose3.h> #include <gtsam/geometry/Pose3.h>
#include <gtsam/base/LieVector.h> #include <gtsam/base/LieVector.h>
#include <gtsam/nonlinear/NonlinearFactor.h> #include <gtsam/nonlinear/NonlinearFactor.h>
@ -20,6 +21,8 @@ namespace gtsam {
* \f$ \xi_k \f$: the body-fixed velocity (Lie algebra) * \f$ \xi_k \f$: the body-fixed velocity (Lie algebra)
* It is somewhat similar to BetweenFactor, but treats the body-fixed velocity * It is somewhat similar to BetweenFactor, but treats the body-fixed velocity
* \f$ \xi_k \f$ as a variable. So it is a three-way factor. * \f$ \xi_k \f$ as a variable. So it is a three-way factor.
* Note: this factor is necessary if one needs to smooth the entire graph. It's not needed
* in sequential update method.
*/ */
class Reconstruction : public NoiseModelFactor3<Pose3, Pose3, LieVector> { class Reconstruction : public NoiseModelFactor3<Pose3, Pose3, LieVector> {
@ -78,8 +81,8 @@ class DiscreteEulerPoincareHelicopter : public NoiseModelFactor3<LieVector, LieV
double h_; /// time step double h_; /// time step
Matrix Inertia_; /// Inertia tensors Inertia = [ J 0; 0 M ] Matrix Inertia_; /// Inertia tensors Inertia = [ J 0; 0 M ]
Vector Fu_; /// F is the 6xc Control matrix, where c is the number of control variables uk, which directly change the vehicle pose (e.g., gas/brake/speed) Vector Fu_; /// F is the 6xc Control matrix, where c is the number of control variables uk, which directly change the vehicle pose (e.g., gas/brake/speed)
/// F(.) is actually a function of the shape variables, which do not change the pose, but affect the vehicle's shape, e.g. steering wheel. /// F(.) is actually a function of the shape variables, which do not change the pose, but affect the vehicle's shape, e.g. steering wheel.
/// Fu_ encodes everything we need to know about the vehicle's dynamics. /// Fu_ encodes everything we need to know about the vehicle's dynamics.
double m_; /// mass. For gravity external force f_ext, which has a fixed formula in this case. double m_; /// mass. For gravity external force f_ext, which has a fixed formula in this case.
// TODO: Fk_ and f_ext should be generalized as functions (factor nodes) on control signals and poses/velocities. // TODO: Fk_ and f_ext should be generalized as functions (factor nodes) on control signals and poses/velocities.
@ -92,8 +95,8 @@ public:
DiscreteEulerPoincareHelicopter(Key xiKey1, Key xiKey_1, Key gKey, DiscreteEulerPoincareHelicopter(Key xiKey1, Key xiKey_1, Key gKey,
double h, const Matrix& Inertia, const Vector& Fu, double m, double h, const Matrix& Inertia, const Vector& Fu, double m,
double mu = 1000.0) : double mu = 1000.0) :
Base(noiseModel::Constrained::All(Pose3::Dim(), fabs(mu)), xiKey1, xiKey_1, gKey), Base(noiseModel::Constrained::All(Pose3::Dim(), fabs(mu)), xiKey1, xiKey_1, gKey),
h_(h), Inertia_(Inertia), Fu_(Fu), m_(m) { h_(h), Inertia_(Inertia), Fu_(Fu), m_(m) {
} }
virtual ~DiscreteEulerPoincareHelicopter() {} virtual ~DiscreteEulerPoincareHelicopter() {}
@ -149,6 +152,52 @@ public:
return hx; return hx;
} }
#if 0
Vector computeError(const LieVector& xik, const LieVector& xik_1, const Pose3& gk) const {
Vector pk = Pose3::dExpInv_exp(h_*xik).transpose()*Inertia_*xik;
Vector pk_1 = Pose3::dExpInv_exp(-h_*xik_1).transpose()*Inertia_*xik_1;
Point3 gravityBody = gk.rotation().unrotate(Point3(0.0, 0.0, -9.81*m_));
Vector f_ext = Vector_(6, 0.0, 0.0, 0.0, gravityBody.x(), gravityBody.y(), gravityBody.z());
Vector hx = pk - pk_1 - h_*Fu_ - h_*f_ext;
return hx;
}
Vector evaluateError(const LieVector& xik, const LieVector& xik_1, const Pose3& gk,
boost::optional<Matrix&> H1 = boost::none,
boost::optional<Matrix&> H2 = boost::none,
boost::optional<Matrix&> H3 = boost::none) const {
if (H1) {
(*H1) = numericalDerivative31(
boost::function<Vector(const LieVector&, const LieVector&, const Pose3&)>(
boost::bind(&DiscreteEulerPoincareHelicopter::computeError, *this, _1, _2, _3)
),
xik, xik_1, gk, 1e-5
);
}
if (H2) {
(*H2) = numericalDerivative32(
boost::function<Vector(const LieVector&, const LieVector&, const Pose3&)>(
boost::bind(&DiscreteEulerPoincareHelicopter::computeError, *this, _1, _2, _3)
),
xik, xik_1, gk, 1e-5
);
}
if (H3) {
(*H3) = numericalDerivative33(
boost::function<Vector(const LieVector&, const LieVector&, const Pose3&)>(
boost::bind(&DiscreteEulerPoincareHelicopter::computeError, *this, _1, _2, _3)
),
xik, xik_1, gk, 1e-5
);
}
return computeError(xik, xik_1, gk);
}
#endif
}; };