fixed maxIteration bug
parent
1f165a9f85
commit
44094b494e
|
|
@ -31,7 +31,7 @@ namespace gtsam {
|
|||
k = 0;
|
||||
verbose = verb;
|
||||
steepest = steep;
|
||||
maxIterations == maxIt ? maxIt : dim(x) * (steepest ? 10 : 1);
|
||||
maxIterations = (maxIt > 0) ? maxIt : dim(x) * (steepest ? 10 : 1);
|
||||
reset = (size_t) (sqrt(dim(x)) + 0.5); // when to reset
|
||||
|
||||
// Start with g0 = A'*(A*x0-b), d0 = - g0
|
||||
|
|
@ -48,16 +48,18 @@ namespace gtsam {
|
|||
}
|
||||
|
||||
/** print */
|
||||
void print() {
|
||||
void print(const V& x) {
|
||||
cout << "iteration = " << k << endl;
|
||||
gtsam::print(x,"x");
|
||||
gtsam::print(g, "g");
|
||||
cout << "dotg = " << gamma << endl;
|
||||
gtsam::print(g,"g");
|
||||
gtsam::print(d,"d");
|
||||
gtsam::print(Ad,"Ad");
|
||||
gtsam::print(d, "d");
|
||||
gtsam::print(Ad, "Ad");
|
||||
}
|
||||
|
||||
/** step the solution */
|
||||
double takeOptimalStep(V& x) {
|
||||
// TODO: can we use gamma instead of dot(d,g) ????? Answer not trivial
|
||||
double alpha = -dot(d, g) / dot(Ad, Ad); // calculate optimal step-size
|
||||
axpy(alpha, d, x); // // do step in new search direction, x += alpha*d
|
||||
return alpha;
|
||||
|
|
@ -68,8 +70,9 @@ namespace gtsam {
|
|||
k += 1; // increase iteration number
|
||||
|
||||
double alpha = takeOptimalStep(x);
|
||||
print(x);
|
||||
|
||||
if (k == maxIterations) return true; //---------------------------------->
|
||||
if (k >= maxIterations) return true; //---------------------------------->
|
||||
|
||||
// update gradient (or re-calculate at reset time)
|
||||
if (k % reset == 0)
|
||||
|
|
@ -80,20 +83,20 @@ namespace gtsam {
|
|||
|
||||
// check for convergence
|
||||
double new_gamma = dot(g, g);
|
||||
if (verbose) cout << "iteration " << k << ": alpha = " << alpha << ", dotg = " << new_gamma << endl;
|
||||
// print();
|
||||
if (new_gamma < threshold) return true; //---------------------------------->
|
||||
if (verbose) cout << "iteration " << k << ": alpha = " << alpha
|
||||
<< ", dotg = " << new_gamma << endl;
|
||||
if (new_gamma < threshold) return true; //---------------------------------->
|
||||
|
||||
// calculate new search direction
|
||||
if (steepest)
|
||||
d = g;
|
||||
else {
|
||||
double beta = new_gamma / gamma;
|
||||
gamma = new_gamma;
|
||||
// d = g + d*beta;
|
||||
scal(beta, d);
|
||||
axpy(1.0, g, d);
|
||||
}
|
||||
gamma = new_gamma;
|
||||
|
||||
// In-place recalculation Ad <- A*d to avoid re-allocating Ad
|
||||
Ab.multiplyInPlace(d, Ad);
|
||||
|
|
@ -109,11 +112,12 @@ namespace gtsam {
|
|||
V conjugateGradients(const S& Ab, V x, bool verbose, double epsilon,
|
||||
double epsilon_abs, size_t maxIterations, bool steepest = false) {
|
||||
|
||||
CGState<S, V, E> state(Ab, x, verbose, epsilon, epsilon_abs, maxIterations, steepest);
|
||||
CGState<S, V, E> state(Ab, x, verbose, epsilon, epsilon_abs, maxIterations,
|
||||
steepest);
|
||||
if (state.gamma < state.threshold) return x;
|
||||
|
||||
if (verbose) cout << "CG: epsilon = " << epsilon << ", maxIterations = "
|
||||
<< maxIterations << ", ||g0||^2 = " << state.gamma
|
||||
<< state.maxIterations << ", ||g0||^2 = " << state.gamma
|
||||
<< ", threshold = " << state.threshold << endl;
|
||||
|
||||
// loop maxIterations times
|
||||
|
|
|
|||
Loading…
Reference in New Issue