Made more efficient by adding errors -> Jacobians back to 1*3, always. This is big savings if a landmark is seen from many poses.
parent
75751cc5fa
commit
43fe036c32
|
@ -36,7 +36,7 @@ protected:
|
||||||
typedef SmartRangeFactor This;
|
typedef SmartRangeFactor This;
|
||||||
|
|
||||||
std::vector<double> measurements_; ///< Range measurements
|
std::vector<double> measurements_; ///< Range measurements
|
||||||
double sigma_; ///< standard deviation on noise
|
double variance_; ///< variance on noise
|
||||||
|
|
||||||
public:
|
public:
|
||||||
|
|
||||||
|
@ -44,8 +44,12 @@ public:
|
||||||
SmartRangeFactor() {
|
SmartRangeFactor() {
|
||||||
}
|
}
|
||||||
|
|
||||||
/** standard binary constructor */
|
/**
|
||||||
SmartRangeFactor(double sigma) : NoiseModelFactor(noiseModel::Isotropic::Sigma(1,sigma_)), sigma_(sigma) {
|
* Constructor
|
||||||
|
* @param s standard deviation of range measurement noise
|
||||||
|
*/
|
||||||
|
SmartRangeFactor(double s) :
|
||||||
|
NoiseModelFactor(noiseModel::Isotropic::Sigma(1, s)), variance_(s * s) {
|
||||||
}
|
}
|
||||||
|
|
||||||
virtual ~SmartRangeFactor() {
|
virtual ~SmartRangeFactor() {
|
||||||
|
@ -55,7 +59,9 @@ public:
|
||||||
void addRange(Key key, double measuredRange) {
|
void addRange(Key key, double measuredRange) {
|
||||||
keys_.push_back(key);
|
keys_.push_back(key);
|
||||||
measurements_.push_back(measuredRange);
|
measurements_.push_back(measuredRange);
|
||||||
noiseModel_ = noiseModel::Isotropic::Sigma(keys_.size(),sigma_);
|
size_t n = keys_.size();
|
||||||
|
// Since we add the errors, the noise variance adds
|
||||||
|
noiseModel_ = noiseModel::Isotropic::Variance(1, n * variance_);
|
||||||
}
|
}
|
||||||
|
|
||||||
// Testable
|
// Testable
|
||||||
|
@ -104,8 +110,9 @@ public:
|
||||||
virtual Vector unwhitenedError(const Values& x,
|
virtual Vector unwhitenedError(const Values& x,
|
||||||
boost::optional<std::vector<Matrix>&> H = boost::none) const {
|
boost::optional<std::vector<Matrix>&> H = boost::none) const {
|
||||||
size_t n = size();
|
size_t n = size();
|
||||||
if (H) assert(H->size()==n);
|
if (H)
|
||||||
Vector errors = zero(n);
|
assert(H->size()==n);
|
||||||
|
Vector errors = zero(1);
|
||||||
if (n >= 3) {
|
if (n >= 3) {
|
||||||
// create n circles corresponding to measured range around each pose
|
// create n circles corresponding to measured range around each pose
|
||||||
std::list<Circle2> circles;
|
std::list<Circle2> circles;
|
||||||
|
@ -114,19 +121,16 @@ public:
|
||||||
circles.push_back(Circle2(pose.translation(), measurements_[j]));
|
circles.push_back(Circle2(pose.translation(), measurements_[j]));
|
||||||
}
|
}
|
||||||
// triangulate to get the optimized point
|
// triangulate to get the optimized point
|
||||||
|
// TODO: Should we have a (better?) variant that does this in relative coordinates ?
|
||||||
Point2 optimizedPoint = triangulate(circles);
|
Point2 optimizedPoint = triangulate(circles);
|
||||||
// now evaluate the errors between predicted and measured range
|
// now evaluate the errors between predicted and measured range
|
||||||
for (size_t j = 0; j < n; j++) {
|
for (size_t j = 0; j < n; j++) {
|
||||||
const Pose2& pose = x.at<Pose2>(keys_[j]);
|
const Pose2& pose = x.at<Pose2>(keys_[j]);
|
||||||
if (H) {
|
if (H)
|
||||||
// calculate n*3 derivative for each of the n poses
|
// also calculate 1*3 derivative for each of the n poses
|
||||||
(*H)[j] = zeros(n,3);
|
errors[0] += pose.range(optimizedPoint, (*H)[j]) - measurements_[j];
|
||||||
Matrix Hj;
|
|
||||||
errors[j] = pose.range(optimizedPoint, Hj) - measurements_[j];
|
|
||||||
(*H)[j].row(j) = Hj;
|
|
||||||
}
|
|
||||||
else
|
else
|
||||||
errors[j] = pose.range(optimizedPoint) - measurements_[j];
|
errors[0] += pose.range(optimizedPoint) - measurements_[j];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
return errors;
|
return errors;
|
||||||
|
@ -135,7 +139,8 @@ public:
|
||||||
/// @return a deep copy of this factor
|
/// @return a deep copy of this factor
|
||||||
virtual gtsam::NonlinearFactor::shared_ptr clone() const {
|
virtual gtsam::NonlinearFactor::shared_ptr clone() const {
|
||||||
return boost::static_pointer_cast<gtsam::NonlinearFactor>(
|
return boost::static_pointer_cast<gtsam::NonlinearFactor>(
|
||||||
gtsam::NonlinearFactor::shared_ptr(new This(*this))); }
|
gtsam::NonlinearFactor::shared_ptr(new This(*this)));
|
||||||
|
}
|
||||||
|
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
|
@ -19,6 +19,7 @@
|
||||||
#include <gtsam_unstable/slam/SmartRangeFactor.h>
|
#include <gtsam_unstable/slam/SmartRangeFactor.h>
|
||||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||||
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
||||||
|
#include <gtsam/slam/PriorFactor.h>
|
||||||
#include <CppUnitLite/TestHarness.h>
|
#include <CppUnitLite/TestHarness.h>
|
||||||
|
|
||||||
using namespace std;
|
using namespace std;
|
||||||
|
@ -68,23 +69,23 @@ TEST( SmartRangeFactor, allAtOnce ) {
|
||||||
EXPECT(assert_equal(Vector_(1,0.0), actual1));
|
EXPECT(assert_equal(Vector_(1,0.0), actual1));
|
||||||
f.addRange(2, r2);
|
f.addRange(2, r2);
|
||||||
Vector actual2 = f.unwhitenedError(values);
|
Vector actual2 = f.unwhitenedError(values);
|
||||||
EXPECT(assert_equal(Vector2(0,0), actual2));
|
EXPECT(assert_equal(Vector_(1,0.0), actual2));
|
||||||
|
|
||||||
f.addRange(3, r3);
|
f.addRange(3, r3);
|
||||||
vector<Matrix> H(3);
|
vector<Matrix> H(3);
|
||||||
Vector actual3 = f.unwhitenedError(values);
|
Vector actual3 = f.unwhitenedError(values);
|
||||||
EXPECT_LONGS_EQUAL(3,f.keys().size());
|
EXPECT_LONGS_EQUAL(3, f.keys().size());
|
||||||
EXPECT(assert_equal(Vector3(0,0,0), actual3));
|
EXPECT(assert_equal(Vector_(1,0.0), actual3));
|
||||||
|
|
||||||
// Check keys and Jacobian
|
// Check keys and Jacobian
|
||||||
Vector actual4 = f.unwhitenedError(values,H); // with H now !
|
Vector actual4 = f.unwhitenedError(values, H); // with H now !
|
||||||
EXPECT(assert_equal(Vector3(0,0,0), actual4));
|
EXPECT(assert_equal(Vector_(1,0.0), actual4));
|
||||||
CHECK(assert_equal(Matrix_(3,3, 0.0,-1.0,0.0, 0.0,0.0,0.0, 0.0,0.0,0.0), H.front()));
|
CHECK(assert_equal(Matrix_(1,3, 0.0,-1.0,0.0), H.front()));
|
||||||
CHECK(assert_equal(Matrix_(3,3, 0.0,0.0,0.0, 0.0,0.0,0.0, sqrt(2)/2,-sqrt(2)/2,0.0), H.back()));
|
CHECK(assert_equal(Matrix_(1,3, sqrt(2)/2,-sqrt(2)/2,0.0), H.back()));
|
||||||
|
|
||||||
// Test clone
|
// Test clone
|
||||||
NonlinearFactor::shared_ptr clone = f.clone();
|
NonlinearFactor::shared_ptr clone = f.clone();
|
||||||
EXPECT_LONGS_EQUAL(3,clone->keys().size());
|
EXPECT_LONGS_EQUAL(3, clone->keys().size());
|
||||||
|
|
||||||
// Create initial value for optimization
|
// Create initial value for optimization
|
||||||
Values initial;
|
Values initial;
|
||||||
|
@ -92,18 +93,23 @@ TEST( SmartRangeFactor, allAtOnce ) {
|
||||||
initial.insert(2, Pose2(5, 0, 0));
|
initial.insert(2, Pose2(5, 0, 0));
|
||||||
initial.insert(3, Pose2(5, 6, 0));
|
initial.insert(3, Pose2(5, 6, 0));
|
||||||
Vector actual5 = f.unwhitenedError(initial);
|
Vector actual5 = f.unwhitenedError(initial);
|
||||||
EXPECT(assert_equal(Vector3(0,0,sqrt(25+16)-sqrt(50)), actual5));
|
EXPECT(assert_equal(Vector_(1,sqrt(25+16)-sqrt(50)), actual5));
|
||||||
|
|
||||||
// Try optimizing
|
// Try optimizing
|
||||||
NonlinearFactorGraph graph;
|
NonlinearFactorGraph graph;
|
||||||
graph.add(f);
|
graph.add(f);
|
||||||
|
const noiseModel::Base::shared_ptr //
|
||||||
|
priorNoise = noiseModel::Diagonal::Sigmas(Vector3(1, 1, M_PI));
|
||||||
|
graph.add(PriorFactor<Pose2>(1, pose1, priorNoise));
|
||||||
|
graph.add(PriorFactor<Pose2>(2, pose2, priorNoise));
|
||||||
LevenbergMarquardtParams params;
|
LevenbergMarquardtParams params;
|
||||||
//params.setVerbosity("ERROR");
|
// params.setVerbosity("ERROR");
|
||||||
Values result = LevenbergMarquardtOptimizer(graph, initial, params).optimize();
|
Values result =
|
||||||
|
LevenbergMarquardtOptimizer(graph, initial, params).optimize();
|
||||||
EXPECT(assert_equal(values.at<Pose2>(1), result.at<Pose2>(1)));
|
EXPECT(assert_equal(values.at<Pose2>(1), result.at<Pose2>(1)));
|
||||||
EXPECT(assert_equal(values.at<Pose2>(2), result.at<Pose2>(2)));
|
EXPECT(assert_equal(values.at<Pose2>(2), result.at<Pose2>(2)));
|
||||||
// only the third pose will be changed, converges on following:
|
// only the third pose will be changed, converges on following:
|
||||||
EXPECT(assert_equal(Pose2(5.52157630366, 5.58273895707, 0), result.at<Pose2>(3)));
|
EXPECT(assert_equal(Pose2(5.52159, 5.582727, 0), result.at<Pose2>(3),1e-5));
|
||||||
}
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
|
|
Loading…
Reference in New Issue