plot all hypotheses
parent
ed409c3dc2
commit
435e721f5c
|
@ -15,6 +15,7 @@ import time
|
|||
|
||||
import numpy as np
|
||||
from gtsam.symbol_shorthand import L, M, X
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
import gtsam
|
||||
from gtsam import (BetweenFactorPose2, HybridNonlinearFactor,
|
||||
|
@ -87,13 +88,52 @@ class City10000Dataset:
|
|||
return None, None
|
||||
|
||||
|
||||
def plot_estimates(gt,
|
||||
estimates,
|
||||
fignum: int,
|
||||
estimate_color=(0.1, 0.1, 0.9, 0.4),
|
||||
estimate_label="Hybrid Factor Graphs",
|
||||
text="graph"):
|
||||
"""Plot the City10000 estimates against the ground truth.
|
||||
|
||||
Args:
|
||||
estimates (np.ndarray): The estimates trajectory as xy values.
|
||||
fignum (int): The figure number for multiple plots.
|
||||
estimate_color (tuple, optional): The color to use for the graph of estimates.
|
||||
Defaults to (0.1, 0.1, 0.9, 0.4).
|
||||
estimate_label (str, optional): Label for the estimates, used in the legend.
|
||||
Defaults to "Hybrid Factor Graphs".
|
||||
"""
|
||||
fig = plt.figure(fignum)
|
||||
ax = fig.gca()
|
||||
ax.axis('equal')
|
||||
ax.axis((-65.0, 65.0, -75.0, 60.0))
|
||||
ax.plot(gt[:, 0],
|
||||
gt[:, 1],
|
||||
'--',
|
||||
linewidth=1,
|
||||
color=(0.1, 0.7, 0.1, 0.5),
|
||||
label="Ground Truth")
|
||||
ax.plot(estimates[:, 0],
|
||||
estimates[:, 1],
|
||||
'-',
|
||||
linewidth=1,
|
||||
color=estimate_color,
|
||||
label=estimate_label)
|
||||
ax.legend()
|
||||
fig.text(0.3, 0.03, text)
|
||||
|
||||
filename = f"city10000_{text.replace('_', ' ')}.svg"
|
||||
fig.savefig(filename, format="svg")
|
||||
|
||||
|
||||
class Experiment:
|
||||
"""Experiment Class"""
|
||||
|
||||
def __init__(self,
|
||||
filename: str,
|
||||
marginal_threshold: float = 0.9999,
|
||||
max_loop_count: int = 8000,
|
||||
marginal_threshold: float = 1.9999,
|
||||
max_loop_count: int = 100,
|
||||
update_frequency: int = 3,
|
||||
max_num_hypotheses: int = 10,
|
||||
relinearization_frequency: int = 10):
|
||||
|
@ -200,7 +240,7 @@ class Experiment:
|
|||
num_measurements = len(pose_array)
|
||||
|
||||
# Take the first one as the initial estimate
|
||||
odom_pose = pose_array[0]
|
||||
odom_pose = pose_array[np.random.choice(num_measurements)]
|
||||
if key_s == key_t - 1:
|
||||
# Odometry factor
|
||||
if num_measurements > 1:
|
||||
|
@ -271,7 +311,48 @@ class Experiment:
|
|||
total_time = end_time - start_time
|
||||
print(f"Total time: {total_time} seconds")
|
||||
|
||||
self.save_results(result, key_t + 1, time_list)
|
||||
# self.save_results(result, key_t + 1, time_list)
|
||||
|
||||
# Get all the discrete values
|
||||
discrete_keys = gtsam.DiscreteKeys()
|
||||
for key in delta.discrete().keys():
|
||||
# TODO Get cardinality from DiscreteFactor
|
||||
discrete_keys.push_back((key, 2))
|
||||
print("plotting all hypotheses")
|
||||
self.plot_all_hypotheses(discrete_keys, key_t + 1)
|
||||
|
||||
def plot_all_hypotheses(self, discrete_keys, num_poses):
|
||||
"""Plot all possible hypotheses."""
|
||||
|
||||
# Get ground truth
|
||||
gt = np.loadtxt(gtsam.findExampleDataFile("ISAM2_GT_city10000.txt"),
|
||||
delimiter=" ")
|
||||
|
||||
# print(discrete_keys)
|
||||
# Get all possible assignments
|
||||
all_assignments = gtsam.cartesianProduct(discrete_keys)
|
||||
|
||||
for idx, assignment in enumerate(all_assignments):
|
||||
print(idx)
|
||||
result = gtsam.Values()
|
||||
delta = self.smoother_.hybridBayesNet().optimize(assignment)
|
||||
result.insert_or_assign(self.initial_.retract(delta))
|
||||
|
||||
poses = []
|
||||
for i in range(num_poses):
|
||||
pose = result.atPose2(X(i))
|
||||
poses.append((pose.x(), pose.y(), pose.theta()))
|
||||
poses = np.asarray(poses)
|
||||
|
||||
assignment_string = "_".join([
|
||||
f"{gtsam.DefaultKeyFormatter(k)}={v}"
|
||||
for k, v in assignment.items()
|
||||
])
|
||||
|
||||
plot_estimates(gt,
|
||||
estimates=poses,
|
||||
fignum=idx,
|
||||
text=assignment_string)
|
||||
|
||||
def save_results(self, result, final_key, time_list):
|
||||
"""Save results to file."""
|
||||
|
|
Loading…
Reference in New Issue