Deprecated some more methods

release/4.3a0
Frank 2016-02-08 15:16:11 -08:00
parent 23d4c0fd9f
commit 4319bece1e
5 changed files with 39 additions and 71 deletions

39
gtsam.h
View File

@ -127,13 +127,13 @@ namespace std {
void pop_back();*/ void pop_back();*/
}; };
//typedef std::vector //typedef std::vector
#include<list> #include<list>
template<T> template<T>
class list class list
{ {
}; };
} }
@ -360,17 +360,6 @@ class Point3 {
// Group // Group
static gtsam::Point3 identity(); static gtsam::Point3 identity();
gtsam::Point3 inverse() const;
gtsam::Point3 compose(const gtsam::Point3& p2) const;
gtsam::Point3 between(const gtsam::Point3& p2) const;
// Manifold
gtsam::Point3 retract(Vector v) const;
Vector localCoordinates(const gtsam::Point3& p) const;
// Lie Group
static gtsam::Point3 Expmap(Vector v);
static Vector Logmap(const gtsam::Point3& p);
// Standard Interface // Standard Interface
Vector vector() const; Vector vector() const;
@ -1069,7 +1058,7 @@ class SymbolicBayesTree {
void clear(); void clear();
void deleteCachedShortcuts(); void deleteCachedShortcuts();
size_t numCachedSeparatorMarginals() const; size_t numCachedSeparatorMarginals() const;
gtsam::SymbolicConditional* marginalFactor(size_t key) const; gtsam::SymbolicConditional* marginalFactor(size_t key) const;
gtsam::SymbolicFactorGraph* joint(size_t key1, size_t key2) const; gtsam::SymbolicFactorGraph* joint(size_t key1, size_t key2) const;
gtsam::SymbolicBayesNet* jointBayesNet(size_t key1, size_t key2) const; gtsam::SymbolicBayesNet* jointBayesNet(size_t key1, size_t key2) const;
@ -1079,19 +1068,19 @@ class SymbolicBayesTree {
// BayesTreeClique(); // BayesTreeClique();
// BayesTreeClique(CONDITIONAL* conditional); // BayesTreeClique(CONDITIONAL* conditional);
// // BayesTreeClique(const std::pair<typename ConditionalType::shared_ptr, typename ConditionalType::FactorType::shared_ptr>& result) : Base(result) {} // // BayesTreeClique(const std::pair<typename ConditionalType::shared_ptr, typename ConditionalType::FactorType::shared_ptr>& result) : Base(result) {}
// //
// bool equals(const This& other, double tol) const; // bool equals(const This& other, double tol) const;
// void print(string s) const; // void print(string s) const;
// void printTree() const; // Default indent of "" // void printTree() const; // Default indent of ""
// void printTree(string indent) const; // void printTree(string indent) const;
// size_t numCachedSeparatorMarginals() const; // size_t numCachedSeparatorMarginals() const;
// //
// CONDITIONAL* conditional() const; // CONDITIONAL* conditional() const;
// bool isRoot() const; // bool isRoot() const;
// size_t treeSize() const; // size_t treeSize() const;
// // const std::list<derived_ptr>& children() const { return children_; } // // const std::list<derived_ptr>& children() const { return children_; }
// // derived_ptr parent() const { return parent_.lock(); } // // derived_ptr parent() const { return parent_.lock(); }
// //
// // FIXME: need wrapped versions graphs, BayesNet // // FIXME: need wrapped versions graphs, BayesNet
// // BayesNet<ConditionalType> shortcut(derived_ptr root, Eliminate function) const; // // BayesNet<ConditionalType> shortcut(derived_ptr root, Eliminate function) const;
// // FactorGraph<FactorType> marginal(derived_ptr root, Eliminate function) const; // // FactorGraph<FactorType> marginal(derived_ptr root, Eliminate function) const;
@ -1345,7 +1334,7 @@ virtual class JacobianFactor : gtsam::GaussianFactor {
void transposeMultiplyAdd(double alpha, const Vector& e, gtsam::VectorValues& x) const; void transposeMultiplyAdd(double alpha, const Vector& e, gtsam::VectorValues& x) const;
gtsam::JacobianFactor whiten() const; gtsam::JacobianFactor whiten() const;
pair<gtsam::GaussianConditional*, gtsam::JacobianFactor*> eliminate(const gtsam::Ordering& keys) const; pair<gtsam::GaussianConditional*, gtsam::JacobianFactor*> eliminate(const gtsam::Ordering& keys) const;
void setModel(bool anyConstrained, const Vector& sigmas); void setModel(bool anyConstrained, const Vector& sigmas);
@ -1422,7 +1411,7 @@ class GaussianFactorGraph {
gtsam::GaussianFactorGraph clone() const; gtsam::GaussianFactorGraph clone() const;
gtsam::GaussianFactorGraph negate() const; gtsam::GaussianFactorGraph negate() const;
// Optimizing and linear algebra // Optimizing and linear algebra
gtsam::VectorValues optimize() const; gtsam::VectorValues optimize() const;
gtsam::VectorValues optimize(const gtsam::Ordering& ordering) const; gtsam::VectorValues optimize(const gtsam::Ordering& ordering) const;
gtsam::VectorValues optimizeGradientSearch() const; gtsam::VectorValues optimizeGradientSearch() const;
@ -1511,7 +1500,7 @@ virtual class GaussianBayesNet {
//Constructors //Constructors
GaussianBayesNet(); GaussianBayesNet();
GaussianBayesNet(const gtsam::GaussianConditional* conditional); GaussianBayesNet(const gtsam::GaussianConditional* conditional);
// Testable // Testable
void print(string s) const; void print(string s) const;
bool equals(const gtsam::GaussianBayesNet& other, double tol) const; bool equals(const gtsam::GaussianBayesNet& other, double tol) const;
@ -1527,7 +1516,7 @@ virtual class GaussianBayesNet {
gtsam::GaussianConditional* back() const; gtsam::GaussianConditional* back() const;
void push_back(gtsam::GaussianConditional* conditional); void push_back(gtsam::GaussianConditional* conditional);
void push_back(const gtsam::GaussianBayesNet& bayesNet); void push_back(const gtsam::GaussianBayesNet& bayesNet);
gtsam::VectorValues optimize() const; gtsam::VectorValues optimize() const;
gtsam::VectorValues optimize(gtsam::VectorValues& solutionForMissing) const; gtsam::VectorValues optimize(gtsam::VectorValues& solutionForMissing) const;
gtsam::VectorValues optimizeGradientSearch() const; gtsam::VectorValues optimizeGradientSearch() const;
@ -1551,7 +1540,7 @@ virtual class GaussianBayesTree {
bool empty() const; bool empty() const;
size_t numCachedSeparatorMarginals() const; size_t numCachedSeparatorMarginals() const;
void saveGraph(string s) const; void saveGraph(string s) const;
gtsam::VectorValues optimize() const; gtsam::VectorValues optimize() const;
gtsam::VectorValues optimizeGradientSearch() const; gtsam::VectorValues optimizeGradientSearch() const;
gtsam::VectorValues gradient(const gtsam::VectorValues& x0) const; gtsam::VectorValues gradient(const gtsam::VectorValues& x0) const;
@ -1833,7 +1822,7 @@ class Values {
/// Fixed size versions, for n in 1..9 /// Fixed size versions, for n in 1..9
Vector atFixed(size_t j, size_t n); Vector atFixed(size_t j, size_t n);
/// version for double /// version for double
void insertDouble(size_t j, double c); void insertDouble(size_t j, double c);
double atDouble(size_t j) const; double atDouble(size_t j) const;
@ -2004,7 +1993,7 @@ virtual class NonlinearOptimizerParams {
void setVerbosity(string s); void setVerbosity(string s);
string getLinearSolverType() const; string getLinearSolverType() const;
void setLinearSolverType(string solver); void setLinearSolverType(string solver);
void setOrdering(const gtsam::Ordering& ordering); void setOrdering(const gtsam::Ordering& ordering);
void setIterativeParams(gtsam::IterativeOptimizationParameters* params); void setIterativeParams(gtsam::IterativeOptimizationParameters* params);

View File

@ -1,6 +1,6 @@
/* ---------------------------------------------------------------------------- /* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation, * GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415 * Atlanta, Georgia 30332-0415
* All Rights Reserved * All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list) * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
@ -75,6 +75,7 @@ double Point3::distance(const Point3 &p2, OptionalJacobian<1, 3> H1,
} }
/* ************************************************************************* */ /* ************************************************************************* */
#ifdef GTSAM_ALLOW_DEPRECATED_SINCE_V4
Point3 Point3::add(const Point3 &q, OptionalJacobian<3,3> H1, Point3 Point3::add(const Point3 &q, OptionalJacobian<3,3> H1,
OptionalJacobian<3,3> H2) const { OptionalJacobian<3,3> H2) const {
if (H1) *H1 = I_3x3; if (H1) *H1 = I_3x3;
@ -82,13 +83,13 @@ Point3 Point3::add(const Point3 &q, OptionalJacobian<3,3> H1,
return *this + q; return *this + q;
} }
/* ************************************************************************* */
Point3 Point3::sub(const Point3 &q, OptionalJacobian<3,3> H1, Point3 Point3::sub(const Point3 &q, OptionalJacobian<3,3> H1,
OptionalJacobian<3,3> H2) const { OptionalJacobian<3,3> H2) const {
if (H1) *H1 = I_3x3; if (H1) *H1 = I_3x3;
if (H2) *H2 = I_3x3; if (H2) *H2 = I_3x3;
return *this - q; return *this - q;
} }
#endif
/* ************************************************************************* */ /* ************************************************************************* */
Point3 Point3::cross(const Point3 &q, OptionalJacobian<3, 3> H_p, OptionalJacobian<3, 3> H_q) const { Point3 Point3::cross(const Point3 &q, OptionalJacobian<3, 3> H_p, OptionalJacobian<3, 3> H_q) const {

View File

@ -107,11 +107,6 @@ namespace gtsam {
double distance(const Point3& p2, OptionalJacobian<1, 3> H1 = boost::none, double distance(const Point3& p2, OptionalJacobian<1, 3> H1 = boost::none,
OptionalJacobian<1, 3> H2 = boost::none) const; OptionalJacobian<1, 3> H2 = boost::none) const;
/** @deprecated The following function has been deprecated, use distance above */
inline double dist(const Point3& p2) const {
return (p2 - *this).norm();
}
/** Distance of the point from the origin, with Jacobian */ /** Distance of the point from the origin, with Jacobian */
double norm(OptionalJacobian<1,3> H = boost::none) const; double norm(OptionalJacobian<1,3> H = boost::none) const;
@ -145,14 +140,6 @@ namespace gtsam {
/// get z /// get z
inline double z() const {return z_;} inline double z() const {return z_;}
/** add two points, add(this,q) is same as this + q */
Point3 add (const Point3 &q,
OptionalJacobian<3, 3> H1=boost::none, OptionalJacobian<3, 3> H2=boost::none) const;
/** subtract two points, sub(this,q) is same as this - q */
Point3 sub (const Point3 &q,
OptionalJacobian<3,3> H1=boost::none, OptionalJacobian<3,3> H2=boost::none) const;
/// @} /// @}
/// Output stream operator /// Output stream operator
@ -168,7 +155,12 @@ namespace gtsam {
Point3 retract(const Vector3& v) const { return compose(Point3(v));} Point3 retract(const Vector3& v) const { return compose(Point3(v));}
static Vector3 Logmap(const Point3& p) { return p.vector();} static Vector3 Logmap(const Point3& p) { return p.vector();}
static Point3 Expmap(const Vector3& v) { return Point3(v);} static Point3 Expmap(const Vector3& v) { return Point3(v);}
/// @} inline double dist(const Point3& p2) const { return (p2 - *this).norm(); }
Point3 add(const Point3& q, OptionalJacobian<3, 3> H1 = boost::none,
OptionalJacobian<3, 3> H2 = boost::none) const;
Point3 sub(const Point3& q, OptionalJacobian<3, 3> H1 = boost::none,
OptionalJacobian<3, 3> H2 = boost::none) const;
/// @}
#endif #endif
private: private:

View File

@ -127,13 +127,13 @@ namespace std {
void pop_back();*/ void pop_back();*/
}; };
//typedef std::vector //typedef std::vector
#include<list> #include<list>
template<T> template<T>
class list class list
{ {
}; };
} }
@ -360,17 +360,6 @@ class Point3 {
// Group // Group
static gtsam::Point3 identity(); static gtsam::Point3 identity();
gtsam::Point3 inverse() const;
gtsam::Point3 compose(const gtsam::Point3& p2) const;
gtsam::Point3 between(const gtsam::Point3& p2) const;
// Manifold
gtsam::Point3 retract(Vector v) const;
Vector localCoordinates(const gtsam::Point3& p) const;
// Lie Group
static gtsam::Point3 Expmap(Vector v);
static Vector Logmap(const gtsam::Point3& p);
// Standard Interface // Standard Interface
Vector vector() const; Vector vector() const;
@ -1069,7 +1058,7 @@ class SymbolicBayesTree {
void clear(); void clear();
void deleteCachedShortcuts(); void deleteCachedShortcuts();
size_t numCachedSeparatorMarginals() const; size_t numCachedSeparatorMarginals() const;
gtsam::SymbolicConditional* marginalFactor(size_t key) const; gtsam::SymbolicConditional* marginalFactor(size_t key) const;
gtsam::SymbolicFactorGraph* joint(size_t key1, size_t key2) const; gtsam::SymbolicFactorGraph* joint(size_t key1, size_t key2) const;
gtsam::SymbolicBayesNet* jointBayesNet(size_t key1, size_t key2) const; gtsam::SymbolicBayesNet* jointBayesNet(size_t key1, size_t key2) const;
@ -1079,19 +1068,19 @@ class SymbolicBayesTree {
// BayesTreeClique(); // BayesTreeClique();
// BayesTreeClique(CONDITIONAL* conditional); // BayesTreeClique(CONDITIONAL* conditional);
// // BayesTreeClique(const std::pair<typename ConditionalType::shared_ptr, typename ConditionalType::FactorType::shared_ptr>& result) : Base(result) {} // // BayesTreeClique(const std::pair<typename ConditionalType::shared_ptr, typename ConditionalType::FactorType::shared_ptr>& result) : Base(result) {}
// //
// bool equals(const This& other, double tol) const; // bool equals(const This& other, double tol) const;
// void print(string s) const; // void print(string s) const;
// void printTree() const; // Default indent of "" // void printTree() const; // Default indent of ""
// void printTree(string indent) const; // void printTree(string indent) const;
// size_t numCachedSeparatorMarginals() const; // size_t numCachedSeparatorMarginals() const;
// //
// CONDITIONAL* conditional() const; // CONDITIONAL* conditional() const;
// bool isRoot() const; // bool isRoot() const;
// size_t treeSize() const; // size_t treeSize() const;
// // const std::list<derived_ptr>& children() const { return children_; } // // const std::list<derived_ptr>& children() const { return children_; }
// // derived_ptr parent() const { return parent_.lock(); } // // derived_ptr parent() const { return parent_.lock(); }
// //
// // FIXME: need wrapped versions graphs, BayesNet // // FIXME: need wrapped versions graphs, BayesNet
// // BayesNet<ConditionalType> shortcut(derived_ptr root, Eliminate function) const; // // BayesNet<ConditionalType> shortcut(derived_ptr root, Eliminate function) const;
// // FactorGraph<FactorType> marginal(derived_ptr root, Eliminate function) const; // // FactorGraph<FactorType> marginal(derived_ptr root, Eliminate function) const;
@ -1345,7 +1334,7 @@ virtual class JacobianFactor : gtsam::GaussianFactor {
void transposeMultiplyAdd(double alpha, const Vector& e, gtsam::VectorValues& x) const; void transposeMultiplyAdd(double alpha, const Vector& e, gtsam::VectorValues& x) const;
gtsam::JacobianFactor whiten() const; gtsam::JacobianFactor whiten() const;
pair<gtsam::GaussianConditional*, gtsam::JacobianFactor*> eliminate(const gtsam::Ordering& keys) const; pair<gtsam::GaussianConditional*, gtsam::JacobianFactor*> eliminate(const gtsam::Ordering& keys) const;
void setModel(bool anyConstrained, const Vector& sigmas); void setModel(bool anyConstrained, const Vector& sigmas);
@ -1422,7 +1411,7 @@ class GaussianFactorGraph {
gtsam::GaussianFactorGraph clone() const; gtsam::GaussianFactorGraph clone() const;
gtsam::GaussianFactorGraph negate() const; gtsam::GaussianFactorGraph negate() const;
// Optimizing and linear algebra // Optimizing and linear algebra
gtsam::VectorValues optimize() const; gtsam::VectorValues optimize() const;
gtsam::VectorValues optimize(const gtsam::Ordering& ordering) const; gtsam::VectorValues optimize(const gtsam::Ordering& ordering) const;
gtsam::VectorValues optimizeGradientSearch() const; gtsam::VectorValues optimizeGradientSearch() const;
@ -1511,7 +1500,7 @@ virtual class GaussianBayesNet {
//Constructors //Constructors
GaussianBayesNet(); GaussianBayesNet();
GaussianBayesNet(const gtsam::GaussianConditional* conditional); GaussianBayesNet(const gtsam::GaussianConditional* conditional);
// Testable // Testable
void print(string s) const; void print(string s) const;
bool equals(const gtsam::GaussianBayesNet& other, double tol) const; bool equals(const gtsam::GaussianBayesNet& other, double tol) const;
@ -1527,7 +1516,7 @@ virtual class GaussianBayesNet {
gtsam::GaussianConditional* back() const; gtsam::GaussianConditional* back() const;
void push_back(gtsam::GaussianConditional* conditional); void push_back(gtsam::GaussianConditional* conditional);
void push_back(const gtsam::GaussianBayesNet& bayesNet); void push_back(const gtsam::GaussianBayesNet& bayesNet);
gtsam::VectorValues optimize() const; gtsam::VectorValues optimize() const;
gtsam::VectorValues optimize(gtsam::VectorValues& solutionForMissing) const; gtsam::VectorValues optimize(gtsam::VectorValues& solutionForMissing) const;
gtsam::VectorValues optimizeGradientSearch() const; gtsam::VectorValues optimizeGradientSearch() const;
@ -1551,7 +1540,7 @@ virtual class GaussianBayesTree {
bool empty() const; bool empty() const;
size_t numCachedSeparatorMarginals() const; size_t numCachedSeparatorMarginals() const;
void saveGraph(string s) const; void saveGraph(string s) const;
gtsam::VectorValues optimize() const; gtsam::VectorValues optimize() const;
gtsam::VectorValues optimizeGradientSearch() const; gtsam::VectorValues optimizeGradientSearch() const;
gtsam::VectorValues gradient(const gtsam::VectorValues& x0) const; gtsam::VectorValues gradient(const gtsam::VectorValues& x0) const;
@ -1833,7 +1822,7 @@ class Values {
/// Fixed size versions, for n in 1..9 /// Fixed size versions, for n in 1..9
Vector atFixed(size_t j, size_t n); Vector atFixed(size_t j, size_t n);
/// version for double /// version for double
void insertDouble(size_t j, double c); void insertDouble(size_t j, double c);
double atDouble(size_t j) const; double atDouble(size_t j) const;
@ -2004,7 +1993,7 @@ virtual class NonlinearOptimizerParams {
void setVerbosity(string s); void setVerbosity(string s);
string getLinearSolverType() const; string getLinearSolverType() const;
void setLinearSolverType(string solver); void setLinearSolverType(string solver);
void setOrdering(const gtsam::Ordering& ordering); void setOrdering(const gtsam::Ordering& ordering);
void setIterativeParams(gtsam::IterativeOptimizationParameters* params); void setIterativeParams(gtsam::IterativeOptimizationParameters* params);

View File

@ -1,6 +1,6 @@
/* ---------------------------------------------------------------------------- /* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation, * GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415 * Atlanta, Georgia 30332-0415
* All Rights Reserved * All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list) * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
@ -36,16 +36,13 @@ class_<Point3>("Point3")
.def(init<const Vector3 &>()) .def(init<const Vector3 &>())
.def("identity", &Point3::identity) .def("identity", &Point3::identity)
.staticmethod("identity") .staticmethod("identity")
.def("add", &Point3::add)
.def("cross", &Point3::cross) .def("cross", &Point3::cross)
.def("dist", &Point3::dist)
.def("distance", &Point3::distance) .def("distance", &Point3::distance)
.def("dot", &Point3::dot) .def("dot", &Point3::dot)
.def("equals", &Point3::equals, equals_overloads(args("q","tol"))) .def("equals", &Point3::equals, equals_overloads(args("q","tol")))
.def("norm", &Point3::norm) .def("norm", &Point3::norm)
.def("normalize", &Point3::normalize) .def("normalize", &Point3::normalize)
.def("print", &Point3::print, print_overloads(args("s"))) .def("print", &Point3::print, print_overloads(args("s")))
.def("sub", &Point3::sub)
.def("vector", &Point3::vector) .def("vector", &Point3::vector)
.def("x", &Point3::x) .def("x", &Point3::x)
.def("y", &Point3::y) .def("y", &Point3::y)
@ -61,4 +58,4 @@ class_<Point3>("Point3")
.def(self == self) .def(self == self)
; ;
} }