included Jacobian for logmap and expmap, with unit tests (Note: only implemented for Rot3M, this will not work in quaternion mode)

release/4.3a0
Luca 2014-12-08 12:30:53 -05:00
parent d5d7594888
commit 422db08c69
3 changed files with 58 additions and 24 deletions

View File

@ -294,15 +294,21 @@ namespace gtsam {
* Exponential map at identity - create a rotation from canonical coordinates
* \f$ [R_x,R_y,R_z] \f$ using Rodriguez' formula
*/
static Rot3 Expmap(const Vector& v) {
if(zero(v)) return Rot3();
else return rodriguez(v);
static Rot3 Expmap(const Vector& v, boost::optional<Matrix3&> H = boost::none) {
if(H){
H->resize(3,3);
*H = Rot3::rightJacobianExpMapSO3(v);
}
if(zero(v))
return Rot3();
else
return rodriguez(v);
}
/**
* Log map at identity - return the canonical coordinates \f$ [R_x,R_y,R_z] \f$ of this rotation
*/
static Vector3 Logmap(const Rot3& R);
static Vector3 Logmap(const Rot3& R, boost::optional<Matrix3&> H = boost::none);
/// Left-trivialized derivative of the exponential map
static Matrix3 dexpL(const Vector3& v);
@ -313,11 +319,19 @@ namespace gtsam {
/**
* Right Jacobian for Exponential map in SO(3) - equation (10.86) and following equations in
* G.S. Chirikjian, "Stochastic Models, Information Theory, and Lie Groups", Volume 2, 2008.
* expmap(thetahat + thetatilde) \approx expmap(thetahat) * expmap(Jr * thetatilde)
* where Jr = rightJacobianExpMapSO3(thetahat);
* This maps a perturbation in the tangent space (thetatilde) to
* a perturbation on the manifold (expmap(Jr * thetatilde))
*/
static Matrix3 rightJacobianExpMapSO3(const Vector3& x);
/** Right Jacobian for Log map in SO(3) - equation (10.86) and following equations in
* G.S. Chirikjian, "Stochastic Models, Information Theory, and Lie Groups", Volume 2, 2008.
* logmap( Rhat * Rtilde) \approx logmap( Rhat ) + Jrinv * logmap( Rtilde )
* where Jrinv = rightJacobianExpMapSO3inverse(logmap( Rtilde ));
* This maps a perturbation on the manifold (Rtilde)
* to a perturbation in the tangent space (Jrinv * logmap( Rtilde ))
*/
static Matrix3 rightJacobianExpMapSO3inverse(const Vector3& x);

View File

@ -200,7 +200,7 @@ Point3 Rot3::rotate(const Point3& p,
/* ************************************************************************* */
// Log map at identity - return the canonical coordinates of this rotation
Vector3 Rot3::Logmap(const Rot3& R) {
Vector3 Rot3::Logmap(const Rot3& R, boost::optional<Matrix3&> H) {
static const double PI = boost::math::constants::pi<double>();
@ -208,6 +208,8 @@ Vector3 Rot3::Logmap(const Rot3& R) {
// Get trace(R)
double tr = rot.trace();
Vector3 thetaR;
// when trace == -1, i.e., when theta = +-pi, +-3pi, +-5pi, etc.
// we do something special
if (std::abs(tr+1.0) < 1e-10) {
@ -218,7 +220,7 @@ Vector3 Rot3::Logmap(const Rot3& R) {
return (PI / sqrt(2.0+2.0*rot(1,1))) *
Vector3(rot(0,1), 1.0+rot(1,1), rot(2,1));
else // if(std::abs(R.r1_.x()+1.0) > 1e-10) This is implicit
return (PI / sqrt(2.0+2.0*rot(0,0))) *
thetaR = (PI / sqrt(2.0+2.0*rot(0,0))) *
Vector3(1.0+rot(0,0), rot(1,0), rot(2,0));
} else {
double magnitude;
@ -231,11 +233,17 @@ Vector3 Rot3::Logmap(const Rot3& R) {
// use Taylor expansion: magnitude \approx 1/2-(t-3)/12 + O((t-3)^2)
magnitude = 0.5 - tr_3*tr_3/12.0;
}
return magnitude*Vector3(
thetaR = magnitude*Vector3(
rot(2,1)-rot(1,2),
rot(0,2)-rot(2,0),
rot(1,0)-rot(0,1));
}
if(H){
H->resize(3,3);
*H = Rot3::rightJacobianExpMapSO3inverse(thetaR);
}
return thetaR;
}
/* ************************************************************************* */

View File

@ -215,33 +215,45 @@ TEST(Rot3, log)
CHECK_OMEGA_ZERO(x*2.*PI,y*2.*PI,z*2.*PI)
}
Vector3 evaluateLogRotation(const Vector3 thetahat, const Vector3 deltatheta){
return Rot3::Logmap( Rot3::Expmap(thetahat).compose( Rot3::Expmap(deltatheta) ) );
/* ************************************************************************* */
Vector3 thetahat(0.1, 0, 0.1);
TEST( Rot3, rightJacobianExpMapSO3 )
{
Matrix Jexpected = numericalDerivative11<Rot3, Vector3>(
boost::bind(&Rot3::Expmap, _1, boost::none), thetahat);
Matrix Jactual = Rot3::rightJacobianExpMapSO3(thetahat);
CHECK(assert_equal(Jexpected, Jactual));
}
/* ************************************************************************* */
TEST( Rot3, rightJacobianExpMapSO3 )
TEST( Rot3, jacobianExpmap )
{
// Linearization point
Vector3 thetahat; thetahat << 0.1, 0, 0;
Matrix expectedJacobian = numericalDerivative11<Rot3, Vector3>(
boost::bind(&Rot3::Expmap, _1), thetahat);
Matrix actualJacobian = Rot3::rightJacobianExpMapSO3(thetahat);
CHECK(assert_equal(expectedJacobian, actualJacobian));
Matrix Jexpected = numericalDerivative11<Rot3, Vector3>(boost::bind(
&Rot3::Expmap, _1, boost::none), thetahat);
Matrix3 Jactual;
const Rot3 R = Rot3::Expmap(thetahat, Jactual);
EXPECT(assert_equal(Jexpected, Jactual));
}
/* ************************************************************************* */
TEST( Rot3, rightJacobianExpMapSO3inverse )
{
// Linearization point
Vector3 thetahat; thetahat << 0.1,0.1,0; ///< Current estimate of rotation rate bias
Vector3 deltatheta; deltatheta << 0, 0, 0;
Rot3 R = Rot3::Expmap(thetahat); // some rotation
Matrix Jexpected = numericalDerivative11<Vector,Rot3>(boost::bind(
&Rot3::Logmap, _1, boost::none), R);
Matrix3 Jactual = Rot3::rightJacobianExpMapSO3inverse(thetahat);
EXPECT(assert_equal(Jexpected, Jactual));
}
Matrix expectedJacobian = numericalDerivative11<Vector3,Vector3>(
boost::bind(&evaluateLogRotation, thetahat, _1), deltatheta);
Matrix actualJacobian = Rot3::rightJacobianExpMapSO3inverse(thetahat);
EXPECT(assert_equal(expectedJacobian, actualJacobian));
/* ************************************************************************* */
TEST( Rot3, jacobianLogmap )
{
Rot3 R = Rot3::Expmap(thetahat); // some rotation
Matrix Jexpected = numericalDerivative11<Vector,Rot3>(boost::bind(
&Rot3::Logmap, _1, boost::none), R);
Matrix3 Jactual;
Rot3::Logmap(R, Jactual);
EXPECT(assert_equal(Jexpected, Jactual));
}
/* ************************************************************************* */