included Jacobian for logmap and expmap, with unit tests (Note: only implemented for Rot3M, this will not work in quaternion mode)
parent
d5d7594888
commit
422db08c69
|
@ -294,15 +294,21 @@ namespace gtsam {
|
|||
* Exponential map at identity - create a rotation from canonical coordinates
|
||||
* \f$ [R_x,R_y,R_z] \f$ using Rodriguez' formula
|
||||
*/
|
||||
static Rot3 Expmap(const Vector& v) {
|
||||
if(zero(v)) return Rot3();
|
||||
else return rodriguez(v);
|
||||
static Rot3 Expmap(const Vector& v, boost::optional<Matrix3&> H = boost::none) {
|
||||
if(H){
|
||||
H->resize(3,3);
|
||||
*H = Rot3::rightJacobianExpMapSO3(v);
|
||||
}
|
||||
if(zero(v))
|
||||
return Rot3();
|
||||
else
|
||||
return rodriguez(v);
|
||||
}
|
||||
|
||||
/**
|
||||
* Log map at identity - return the canonical coordinates \f$ [R_x,R_y,R_z] \f$ of this rotation
|
||||
*/
|
||||
static Vector3 Logmap(const Rot3& R);
|
||||
static Vector3 Logmap(const Rot3& R, boost::optional<Matrix3&> H = boost::none);
|
||||
|
||||
/// Left-trivialized derivative of the exponential map
|
||||
static Matrix3 dexpL(const Vector3& v);
|
||||
|
@ -313,11 +319,19 @@ namespace gtsam {
|
|||
/**
|
||||
* Right Jacobian for Exponential map in SO(3) - equation (10.86) and following equations in
|
||||
* G.S. Chirikjian, "Stochastic Models, Information Theory, and Lie Groups", Volume 2, 2008.
|
||||
* expmap(thetahat + thetatilde) \approx expmap(thetahat) * expmap(Jr * thetatilde)
|
||||
* where Jr = rightJacobianExpMapSO3(thetahat);
|
||||
* This maps a perturbation in the tangent space (thetatilde) to
|
||||
* a perturbation on the manifold (expmap(Jr * thetatilde))
|
||||
*/
|
||||
static Matrix3 rightJacobianExpMapSO3(const Vector3& x);
|
||||
|
||||
/** Right Jacobian for Log map in SO(3) - equation (10.86) and following equations in
|
||||
* G.S. Chirikjian, "Stochastic Models, Information Theory, and Lie Groups", Volume 2, 2008.
|
||||
* logmap( Rhat * Rtilde) \approx logmap( Rhat ) + Jrinv * logmap( Rtilde )
|
||||
* where Jrinv = rightJacobianExpMapSO3inverse(logmap( Rtilde ));
|
||||
* This maps a perturbation on the manifold (Rtilde)
|
||||
* to a perturbation in the tangent space (Jrinv * logmap( Rtilde ))
|
||||
*/
|
||||
static Matrix3 rightJacobianExpMapSO3inverse(const Vector3& x);
|
||||
|
||||
|
|
|
@ -200,7 +200,7 @@ Point3 Rot3::rotate(const Point3& p,
|
|||
|
||||
/* ************************************************************************* */
|
||||
// Log map at identity - return the canonical coordinates of this rotation
|
||||
Vector3 Rot3::Logmap(const Rot3& R) {
|
||||
Vector3 Rot3::Logmap(const Rot3& R, boost::optional<Matrix3&> H) {
|
||||
|
||||
static const double PI = boost::math::constants::pi<double>();
|
||||
|
||||
|
@ -208,6 +208,8 @@ Vector3 Rot3::Logmap(const Rot3& R) {
|
|||
// Get trace(R)
|
||||
double tr = rot.trace();
|
||||
|
||||
Vector3 thetaR;
|
||||
|
||||
// when trace == -1, i.e., when theta = +-pi, +-3pi, +-5pi, etc.
|
||||
// we do something special
|
||||
if (std::abs(tr+1.0) < 1e-10) {
|
||||
|
@ -218,7 +220,7 @@ Vector3 Rot3::Logmap(const Rot3& R) {
|
|||
return (PI / sqrt(2.0+2.0*rot(1,1))) *
|
||||
Vector3(rot(0,1), 1.0+rot(1,1), rot(2,1));
|
||||
else // if(std::abs(R.r1_.x()+1.0) > 1e-10) This is implicit
|
||||
return (PI / sqrt(2.0+2.0*rot(0,0))) *
|
||||
thetaR = (PI / sqrt(2.0+2.0*rot(0,0))) *
|
||||
Vector3(1.0+rot(0,0), rot(1,0), rot(2,0));
|
||||
} else {
|
||||
double magnitude;
|
||||
|
@ -231,11 +233,17 @@ Vector3 Rot3::Logmap(const Rot3& R) {
|
|||
// use Taylor expansion: magnitude \approx 1/2-(t-3)/12 + O((t-3)^2)
|
||||
magnitude = 0.5 - tr_3*tr_3/12.0;
|
||||
}
|
||||
return magnitude*Vector3(
|
||||
thetaR = magnitude*Vector3(
|
||||
rot(2,1)-rot(1,2),
|
||||
rot(0,2)-rot(2,0),
|
||||
rot(1,0)-rot(0,1));
|
||||
}
|
||||
|
||||
if(H){
|
||||
H->resize(3,3);
|
||||
*H = Rot3::rightJacobianExpMapSO3inverse(thetaR);
|
||||
}
|
||||
return thetaR;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
@ -215,33 +215,45 @@ TEST(Rot3, log)
|
|||
CHECK_OMEGA_ZERO(x*2.*PI,y*2.*PI,z*2.*PI)
|
||||
}
|
||||
|
||||
Vector3 evaluateLogRotation(const Vector3 thetahat, const Vector3 deltatheta){
|
||||
return Rot3::Logmap( Rot3::Expmap(thetahat).compose( Rot3::Expmap(deltatheta) ) );
|
||||
/* ************************************************************************* */
|
||||
Vector3 thetahat(0.1, 0, 0.1);
|
||||
TEST( Rot3, rightJacobianExpMapSO3 )
|
||||
{
|
||||
Matrix Jexpected = numericalDerivative11<Rot3, Vector3>(
|
||||
boost::bind(&Rot3::Expmap, _1, boost::none), thetahat);
|
||||
Matrix Jactual = Rot3::rightJacobianExpMapSO3(thetahat);
|
||||
CHECK(assert_equal(Jexpected, Jactual));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( Rot3, rightJacobianExpMapSO3 )
|
||||
TEST( Rot3, jacobianExpmap )
|
||||
{
|
||||
// Linearization point
|
||||
Vector3 thetahat; thetahat << 0.1, 0, 0;
|
||||
|
||||
Matrix expectedJacobian = numericalDerivative11<Rot3, Vector3>(
|
||||
boost::bind(&Rot3::Expmap, _1), thetahat);
|
||||
Matrix actualJacobian = Rot3::rightJacobianExpMapSO3(thetahat);
|
||||
CHECK(assert_equal(expectedJacobian, actualJacobian));
|
||||
Matrix Jexpected = numericalDerivative11<Rot3, Vector3>(boost::bind(
|
||||
&Rot3::Expmap, _1, boost::none), thetahat);
|
||||
Matrix3 Jactual;
|
||||
const Rot3 R = Rot3::Expmap(thetahat, Jactual);
|
||||
EXPECT(assert_equal(Jexpected, Jactual));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( Rot3, rightJacobianExpMapSO3inverse )
|
||||
{
|
||||
// Linearization point
|
||||
Vector3 thetahat; thetahat << 0.1,0.1,0; ///< Current estimate of rotation rate bias
|
||||
Vector3 deltatheta; deltatheta << 0, 0, 0;
|
||||
Rot3 R = Rot3::Expmap(thetahat); // some rotation
|
||||
Matrix Jexpected = numericalDerivative11<Vector,Rot3>(boost::bind(
|
||||
&Rot3::Logmap, _1, boost::none), R);
|
||||
Matrix3 Jactual = Rot3::rightJacobianExpMapSO3inverse(thetahat);
|
||||
EXPECT(assert_equal(Jexpected, Jactual));
|
||||
}
|
||||
|
||||
Matrix expectedJacobian = numericalDerivative11<Vector3,Vector3>(
|
||||
boost::bind(&evaluateLogRotation, thetahat, _1), deltatheta);
|
||||
Matrix actualJacobian = Rot3::rightJacobianExpMapSO3inverse(thetahat);
|
||||
EXPECT(assert_equal(expectedJacobian, actualJacobian));
|
||||
/* ************************************************************************* */
|
||||
TEST( Rot3, jacobianLogmap )
|
||||
{
|
||||
Rot3 R = Rot3::Expmap(thetahat); // some rotation
|
||||
Matrix Jexpected = numericalDerivative11<Vector,Rot3>(boost::bind(
|
||||
&Rot3::Logmap, _1, boost::none), R);
|
||||
Matrix3 Jactual;
|
||||
Rot3::Logmap(R, Jactual);
|
||||
EXPECT(assert_equal(Jexpected, Jactual));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
Loading…
Reference in New Issue