Thoroughly tested predictQ by comparing with predict2. Uncovered a bug in QR if HessianFactor is involved.
parent
c75bb0707a
commit
4225f37846
|
|
@ -32,7 +32,7 @@ namespace gtsam {
|
|||
GaussianConditional* solve(GaussianFactorGraph& factorGraph) {
|
||||
|
||||
// Solve the factor graph
|
||||
const bool useQR = true; // make sure we use QR (numerically stable)
|
||||
const bool useQR = false; // make sure we use QR (numerically stable)
|
||||
GaussianSequentialSolver solver(factorGraph, useQR);
|
||||
GaussianBayesNet::shared_ptr bayesNet = solver.eliminate();
|
||||
|
||||
|
|
@ -124,32 +124,19 @@ namespace gtsam {
|
|||
// The factor related to the motion model is defined as
|
||||
// f2(x_{t},x_{t+1}) = (F*x_{t} + B*u - x_{t+1}) * Q^-1 * (F*x_{t} + B*u - x_{t+1})^T
|
||||
// See documentation in HessianFactor, we have A1 = -F, A2 = I_, b = B*u:
|
||||
Vector b = B*u;
|
||||
Matrix M = inverse(Q);
|
||||
Matrix Ft = trans(F);
|
||||
Matrix G12 = -Ft*M;
|
||||
Matrix G11 = -G12*F;
|
||||
Matrix G22 = M;
|
||||
Vector g2 = M*b;
|
||||
Vector g1 = -Ft*g2;
|
||||
// TODO: starts to seem more elaborate than straight-up KF equations?
|
||||
Matrix M = inverse(Q), Ft = trans(F);
|
||||
Matrix G12 = -Ft*M, G11 = -G12*F, G22 = M;
|
||||
Vector b = B*u, g2 = M*b, g1 = -Ft*g2;
|
||||
double f = dot(b,g2);
|
||||
HessianFactor::shared_ptr factor(new HessianFactor(0, 1, G11, G12, g1, G22, g2, f));
|
||||
|
||||
//#define DEBUG_PREDICTQ
|
||||
#ifdef DEBUG_PREDICTQ
|
||||
gtsam::print(b);
|
||||
gtsam::print(M);
|
||||
gtsam::print(G11);
|
||||
gtsam::print(G12);
|
||||
gtsam::print(G22);
|
||||
gtsam::print(g1);
|
||||
gtsam::print(g2);
|
||||
cout << f << endl;
|
||||
factor->print("factor");
|
||||
#endif
|
||||
|
||||
factorGraph.push_back(factor);
|
||||
|
||||
#ifdef DEBUG_PREDICTQ
|
||||
Matrix AbtAb = factorGraph.denseHessian();
|
||||
gtsam::print(AbtAb);
|
||||
#endif
|
||||
|
||||
// Eliminate graph in order x0, x1, to get Bayes net P(x0|x1)P(x1)
|
||||
density_.reset(solve(factorGraph));
|
||||
}
|
||||
|
|
@ -165,13 +152,10 @@ namespace gtsam {
|
|||
// However, now the factor related to the motion model is defined as
|
||||
// f2(x_{t},x_{t+1}) = |A0*x_{t} + A1*x_{t+1} - b|^2
|
||||
factorGraph.add(0, A0, 1, A1, b, model);
|
||||
#ifdef DEBUG_PREDICTQ
|
||||
gtsam::print(Matrix(trans(A0)*A0));
|
||||
gtsam::print(Matrix(trans(A0)*A1));
|
||||
gtsam::print(Matrix(trans(A1)*A1));
|
||||
gtsam::print(Matrix(trans(A0)*b));
|
||||
gtsam::print(Matrix(trans(A1)*b));
|
||||
cout << dot(b,b) << endl;
|
||||
|
||||
#ifdef DEBUG_PREDICTQ
|
||||
Matrix AbtAb = factorGraph.denseHessian();
|
||||
gtsam::print(AbtAb);
|
||||
#endif
|
||||
|
||||
density_.reset(solve(factorGraph));
|
||||
|
|
|
|||
|
|
@ -104,8 +104,8 @@ TEST( KalmanFilter, linear1 ) {
|
|||
EXPECT(assert_equal(expected1,kalmanFilter.mean()));
|
||||
EXPECT(assert_equal(I11,kalmanFilter.information()));
|
||||
|
||||
// Run iteration 2
|
||||
kalmanFilter.predict(F, B, u, modelQ);
|
||||
// Run iteration 2 (with full covariance)
|
||||
kalmanFilter.predictQ(F, B, u, Q);
|
||||
EXPECT(assert_equal(expected2,kalmanFilter.mean()));
|
||||
kalmanFilter.update(H,z2,modelR);
|
||||
EXPECT(assert_equal(expected2,kalmanFilter.mean()));
|
||||
|
|
@ -117,6 +117,36 @@ TEST( KalmanFilter, linear1 ) {
|
|||
EXPECT(assert_equal(expected3,kalmanFilter.mean()));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( KalmanFilter, predict ) {
|
||||
|
||||
// Create dynamics model
|
||||
Matrix F = Matrix_(2,2, 1.0,0.1, 0.2,1.1);
|
||||
Matrix B = Matrix_(2,3, 1.0,0.1,0.2, 1.1,1.2,0.8);
|
||||
Vector u = Vector_(3, 1.0, 0.0, 2.0);
|
||||
Matrix R = Matrix_(2,2, 1.0,0.0, 0.0,3.0);
|
||||
Matrix M = trans(R)*R;
|
||||
Matrix Q = inverse(M);
|
||||
|
||||
// Create the Kalman Filter initialization point
|
||||
State x_initial(0.0,0.0);
|
||||
SharedDiagonal P_initial = noiseModel::Isotropic::Sigma(2,1);
|
||||
|
||||
// Create two KalmanFilter objects
|
||||
KalmanFilter kalmanFilter1(x_initial, P_initial);
|
||||
KalmanFilter kalmanFilter2(x_initial, P_initial);
|
||||
|
||||
// Ensure predictQ and predict2 give same answer for non-trivial inputs
|
||||
kalmanFilter1.predictQ(F, B, u, Q);
|
||||
// We have A1 = -F, A2 = I_, b = B*u:
|
||||
Matrix A1 = -R*F, A2 = R;
|
||||
Vector b = R*B*u;
|
||||
SharedDiagonal nop = noiseModel::Isotropic::Sigma(2, 1.0);
|
||||
kalmanFilter2.predict2(A1,A2,b,nop);
|
||||
EXPECT(assert_equal(kalmanFilter1.mean(),kalmanFilter2.mean()));
|
||||
EXPECT(assert_equal(kalmanFilter1.covariance(),kalmanFilter2.covariance()));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
|
|
|
|||
Loading…
Reference in New Issue