cleanup
parent
53e3de3629
commit
413b9d8202
|
@ -153,51 +153,64 @@ class SmartStereoProjectionFactorPP : public SmartStereoProjectionFactor {
|
|||
*/
|
||||
Base::Cameras cameras(const Values& values) const override;
|
||||
|
||||
/// Compute F, E only (called below in both vanilla and SVD versions)
|
||||
/// Assumes the point has been computed
|
||||
/// Note E can be 2m*3 or 2m*2, in case point is degenerate
|
||||
/**
|
||||
* Compute jacobian F, E and error vector at a given linearization point
|
||||
* @param values Values structure which must contain camera poses
|
||||
* corresponding to keys involved in this factor
|
||||
* @return Return arguments are the camera jacobians Fs (including the jacobian with
|
||||
* respect to both the body pose and extrinsic pose), the point Jacobian E,
|
||||
* and the error vector b. Note that the jacobians are computed for a given point.
|
||||
*/
|
||||
void computeJacobiansAndCorrectForMissingMeasurements(
|
||||
FBlocks& Fs, Matrix& E, Vector& b, const Values& values) const {
|
||||
if (!result_) {
|
||||
throw("computeJacobiansWithTriangulatedPoint");
|
||||
} else { // valid result: compute jacobians
|
||||
size_t numViews = measured_.size();
|
||||
E = Matrix::Zero(3 * numViews, 3); // a StereoPoint2 for each view
|
||||
E = Matrix::Zero(3 * numViews, 3); // a StereoPoint2 for each view (point jacobian)
|
||||
b = Vector::Zero(3 * numViews); // a StereoPoint2 for each view
|
||||
Matrix dPoseCam_dPoseBody, dPoseCam_dPoseExt, dProject_dPoseCam, Ei;
|
||||
Matrix dPoseCam_dPoseBody_i, dPoseCam_dPoseExt_i, dProject_dPoseCam_i, Ei;
|
||||
|
||||
for (size_t i = 0; i < numViews; i++) { // for each camera/measurement
|
||||
Pose3 w_P_body = values.at<Pose3>(world_P_body_keys_.at(i));
|
||||
Pose3 body_P_cam = values.at<Pose3>(body_P_cam_keys_.at(i));
|
||||
StereoCamera camera(
|
||||
w_P_body.compose(body_P_cam, dPoseCam_dPoseBody, dPoseCam_dPoseExt),
|
||||
w_P_body.compose(body_P_cam, dPoseCam_dPoseBody_i, dPoseCam_dPoseExt_i),
|
||||
K_all_[i]);
|
||||
StereoPoint2 reprojectionError = StereoPoint2(
|
||||
camera.project(*result_, dProject_dPoseCam, Ei) - measured_.at(i));
|
||||
// get jacobians and error vector for current measurement
|
||||
StereoPoint2 reprojectionError_i = StereoPoint2(
|
||||
camera.project(*result_, dProject_dPoseCam_i, Ei) - measured_.at(i));
|
||||
Eigen::Matrix<double, ZDim, Dim> J; // 3 x 12
|
||||
J.block<ZDim, 6>(0, 0) = dProject_dPoseCam * dPoseCam_dPoseBody; // (3x6) * (6x6)
|
||||
J.block<ZDim, 6>(0, 6) = dProject_dPoseCam * dPoseCam_dPoseExt; // (3x6) * (6x6)
|
||||
if (std::isnan(measured_.at(i).uR())) // if the right pixel is invalid
|
||||
J.block<ZDim, 6>(0, 0) = dProject_dPoseCam_i * dPoseCam_dPoseBody_i; // (3x6) * (6x6)
|
||||
J.block<ZDim, 6>(0, 6) = dProject_dPoseCam_i * dPoseCam_dPoseExt_i; // (3x6) * (6x6)
|
||||
// if the right pixel is invalid, fix jacobians
|
||||
if (std::isnan(measured_.at(i).uR()))
|
||||
{
|
||||
J.block<1, 12>(1, 0) = Matrix::Zero(1, 12);
|
||||
Ei.block<1, 3>(1, 0) = Matrix::Zero(1, 3);
|
||||
reprojectionError = StereoPoint2(reprojectionError.uL(), 0.0,
|
||||
reprojectionError.v());
|
||||
reprojectionError_i = StereoPoint2(reprojectionError_i.uL(), 0.0,
|
||||
reprojectionError_i.v());
|
||||
}
|
||||
// fit into the output structures
|
||||
Fs.push_back(J);
|
||||
size_t row = 3 * i;
|
||||
b.segment<ZDim>(row) = -reprojectionError.vector();
|
||||
b.segment<ZDim>(row) = -reprojectionError_i.vector();
|
||||
E.block<3, 3>(row, 0) = Ei;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// linearize returns a Hessianfactor that is an approximation of error(p)
|
||||
/// linearize and return a Hessianfactor that is an approximation of error(p)
|
||||
boost::shared_ptr<RegularHessianFactor<DimPose> > createHessianFactor(
|
||||
const Values& values, const double lambda = 0.0, bool diagonalDamping =
|
||||
false) const {
|
||||
|
||||
// we may have multiple cameras sharing the same extrinsic cals, hence the number
|
||||
// of keys may be smaller than 2 * nrMeasurements (which is the upper bound where we
|
||||
// have a body key and an extrinsic calibration key for each measurement)
|
||||
size_t nrUniqueKeys = keys_.size();
|
||||
size_t nrNonuniqueKeys = world_P_body_keys_.size()
|
||||
+ body_P_cam_keys_.size();
|
||||
|
||||
// Create structures for Hessian Factors
|
||||
KeyVector js;
|
||||
|
@ -208,10 +221,10 @@ class SmartStereoProjectionFactorPP : public SmartStereoProjectionFactor {
|
|||
throw std::runtime_error("SmartStereoProjectionHessianFactor: this->"
|
||||
"measured_.size() inconsistent with input");
|
||||
|
||||
// triangulate 3D point at given linearization point
|
||||
triangulateSafe(cameras(values));
|
||||
|
||||
if (!result_) {
|
||||
// failed: return"empty" Hessian
|
||||
if (!result_) { // failed: return "empty/zero" Hessian
|
||||
for (Matrix& m : Gs)
|
||||
m = Matrix::Zero(DimPose, DimPose);
|
||||
for (Vector& v : gs)
|
||||
|
@ -220,7 +233,7 @@ class SmartStereoProjectionFactorPP : public SmartStereoProjectionFactor {
|
|||
> (keys_, Gs, gs, 0.0);
|
||||
}
|
||||
|
||||
// Jacobian could be 3D Point3 OR 2D Unit3, difference is E.cols().
|
||||
// compute Jacobian given triangulated 3D Point
|
||||
FBlocks Fs;
|
||||
Matrix F, E;
|
||||
Vector b;
|
||||
|
@ -231,26 +244,26 @@ class SmartStereoProjectionFactorPP : public SmartStereoProjectionFactor {
|
|||
for (size_t i = 0; i < Fs.size(); i++)
|
||||
Fs[i] = noiseModel_->Whiten(Fs[i]);
|
||||
|
||||
// build augmented hessian
|
||||
// build augmented Hessian (with last row/column being the information vector)
|
||||
Matrix3 P;
|
||||
Cameras::ComputePointCovariance<3>(P, E, lambda, diagonalDamping);
|
||||
|
||||
// marginalize point
|
||||
SymmetricBlockMatrix augmentedHessian = //
|
||||
// marginalize point: note - we reuse the standard SchurComplement function
|
||||
SymmetricBlockMatrix augmentedHessian =
|
||||
Cameras::SchurComplement<3, Dim>(Fs, E, P, b);
|
||||
|
||||
// now pack into an Hessian factor
|
||||
std::vector<DenseIndex> dims(nrUniqueKeys + 1); // this also includes the b term
|
||||
std::fill(dims.begin(), dims.end() - 1, 6);
|
||||
dims.back() = 1;
|
||||
|
||||
size_t nrNonuniqueKeys = world_P_body_keys_.size()
|
||||
+ body_P_cam_keys_.size();
|
||||
SymmetricBlockMatrix augmentedHessianUniqueKeys;
|
||||
|
||||
// here we have to deal with the fact that some cameras may share the same extrinsic key
|
||||
if (nrUniqueKeys == nrNonuniqueKeys) { // if there is 1 calibration key per camera
|
||||
augmentedHessianUniqueKeys = SymmetricBlockMatrix(
|
||||
dims, Matrix(augmentedHessian.selfadjointView()));
|
||||
} else { // if multiple cameras share a calibration
|
||||
} else { // if multiple cameras share a calibration we have to rearrange
|
||||
// the results of the Schur complement matrix
|
||||
std::vector<DenseIndex> nonuniqueDims(nrNonuniqueKeys + 1); // this also includes the b term
|
||||
std::fill(nonuniqueDims.begin(), nonuniqueDims.end() - 1, 6);
|
||||
nonuniqueDims.back() = 1;
|
||||
|
@ -275,6 +288,7 @@ class SmartStereoProjectionFactorPP : public SmartStereoProjectionFactor {
|
|||
dims, Matrix::Zero(6 * nrUniqueKeys + 1, 6 * nrUniqueKeys + 1));
|
||||
|
||||
// add contributions for each key: note this loops over the hessian with nonUnique keys (augmentedHessian)
|
||||
// and populates an Hessian that only includes the unique keys (that is what we want to return)
|
||||
for (size_t i = 0; i < nrNonuniqueKeys; i++) { // rows
|
||||
Key key_i = nonuniqueKeys.at(i);
|
||||
|
||||
|
@ -303,10 +317,10 @@ class SmartStereoProjectionFactorPP : public SmartStereoProjectionFactor {
|
|||
}
|
||||
}
|
||||
}
|
||||
// update bottom right element of the matrix
|
||||
augmentedHessianUniqueKeys.updateDiagonalBlock(
|
||||
nrUniqueKeys, augmentedHessian.diagonalBlock(nrNonuniqueKeys));
|
||||
}
|
||||
|
||||
return boost::make_shared < RegularHessianFactor<DimPose>
|
||||
> (keys_, augmentedHessianUniqueKeys);
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue