release/4.3a0
lcarlone 2021-04-03 17:59:45 -04:00
parent 53e3de3629
commit 413b9d8202
1 changed files with 41 additions and 27 deletions

View File

@ -153,51 +153,64 @@ class SmartStereoProjectionFactorPP : public SmartStereoProjectionFactor {
*/ */
Base::Cameras cameras(const Values& values) const override; Base::Cameras cameras(const Values& values) const override;
/// Compute F, E only (called below in both vanilla and SVD versions) /**
/// Assumes the point has been computed * Compute jacobian F, E and error vector at a given linearization point
/// Note E can be 2m*3 or 2m*2, in case point is degenerate * @param values Values structure which must contain camera poses
* corresponding to keys involved in this factor
* @return Return arguments are the camera jacobians Fs (including the jacobian with
* respect to both the body pose and extrinsic pose), the point Jacobian E,
* and the error vector b. Note that the jacobians are computed for a given point.
*/
void computeJacobiansAndCorrectForMissingMeasurements( void computeJacobiansAndCorrectForMissingMeasurements(
FBlocks& Fs, Matrix& E, Vector& b, const Values& values) const { FBlocks& Fs, Matrix& E, Vector& b, const Values& values) const {
if (!result_) { if (!result_) {
throw("computeJacobiansWithTriangulatedPoint"); throw("computeJacobiansWithTriangulatedPoint");
} else { // valid result: compute jacobians } else { // valid result: compute jacobians
size_t numViews = measured_.size(); size_t numViews = measured_.size();
E = Matrix::Zero(3 * numViews, 3); // a StereoPoint2 for each view E = Matrix::Zero(3 * numViews, 3); // a StereoPoint2 for each view (point jacobian)
b = Vector::Zero(3 * numViews); // a StereoPoint2 for each view b = Vector::Zero(3 * numViews); // a StereoPoint2 for each view
Matrix dPoseCam_dPoseBody, dPoseCam_dPoseExt, dProject_dPoseCam, Ei; Matrix dPoseCam_dPoseBody_i, dPoseCam_dPoseExt_i, dProject_dPoseCam_i, Ei;
for (size_t i = 0; i < numViews; i++) { // for each camera/measurement for (size_t i = 0; i < numViews; i++) { // for each camera/measurement
Pose3 w_P_body = values.at<Pose3>(world_P_body_keys_.at(i)); Pose3 w_P_body = values.at<Pose3>(world_P_body_keys_.at(i));
Pose3 body_P_cam = values.at<Pose3>(body_P_cam_keys_.at(i)); Pose3 body_P_cam = values.at<Pose3>(body_P_cam_keys_.at(i));
StereoCamera camera( StereoCamera camera(
w_P_body.compose(body_P_cam, dPoseCam_dPoseBody, dPoseCam_dPoseExt), w_P_body.compose(body_P_cam, dPoseCam_dPoseBody_i, dPoseCam_dPoseExt_i),
K_all_[i]); K_all_[i]);
StereoPoint2 reprojectionError = StereoPoint2( // get jacobians and error vector for current measurement
camera.project(*result_, dProject_dPoseCam, Ei) - measured_.at(i)); StereoPoint2 reprojectionError_i = StereoPoint2(
camera.project(*result_, dProject_dPoseCam_i, Ei) - measured_.at(i));
Eigen::Matrix<double, ZDim, Dim> J; // 3 x 12 Eigen::Matrix<double, ZDim, Dim> J; // 3 x 12
J.block<ZDim, 6>(0, 0) = dProject_dPoseCam * dPoseCam_dPoseBody; // (3x6) * (6x6) J.block<ZDim, 6>(0, 0) = dProject_dPoseCam_i * dPoseCam_dPoseBody_i; // (3x6) * (6x6)
J.block<ZDim, 6>(0, 6) = dProject_dPoseCam * dPoseCam_dPoseExt; // (3x6) * (6x6) J.block<ZDim, 6>(0, 6) = dProject_dPoseCam_i * dPoseCam_dPoseExt_i; // (3x6) * (6x6)
if (std::isnan(measured_.at(i).uR())) // if the right pixel is invalid // if the right pixel is invalid, fix jacobians
if (std::isnan(measured_.at(i).uR()))
{ {
J.block<1, 12>(1, 0) = Matrix::Zero(1, 12); J.block<1, 12>(1, 0) = Matrix::Zero(1, 12);
Ei.block<1, 3>(1, 0) = Matrix::Zero(1, 3); Ei.block<1, 3>(1, 0) = Matrix::Zero(1, 3);
reprojectionError = StereoPoint2(reprojectionError.uL(), 0.0, reprojectionError_i = StereoPoint2(reprojectionError_i.uL(), 0.0,
reprojectionError.v()); reprojectionError_i.v());
} }
// fit into the output structures
Fs.push_back(J); Fs.push_back(J);
size_t row = 3 * i; size_t row = 3 * i;
b.segment<ZDim>(row) = -reprojectionError.vector(); b.segment<ZDim>(row) = -reprojectionError_i.vector();
E.block<3, 3>(row, 0) = Ei; E.block<3, 3>(row, 0) = Ei;
} }
} }
} }
/// linearize returns a Hessianfactor that is an approximation of error(p) /// linearize and return a Hessianfactor that is an approximation of error(p)
boost::shared_ptr<RegularHessianFactor<DimPose> > createHessianFactor( boost::shared_ptr<RegularHessianFactor<DimPose> > createHessianFactor(
const Values& values, const double lambda = 0.0, bool diagonalDamping = const Values& values, const double lambda = 0.0, bool diagonalDamping =
false) const { false) const {
// we may have multiple cameras sharing the same extrinsic cals, hence the number
// of keys may be smaller than 2 * nrMeasurements (which is the upper bound where we
// have a body key and an extrinsic calibration key for each measurement)
size_t nrUniqueKeys = keys_.size(); size_t nrUniqueKeys = keys_.size();
size_t nrNonuniqueKeys = world_P_body_keys_.size()
+ body_P_cam_keys_.size();
// Create structures for Hessian Factors // Create structures for Hessian Factors
KeyVector js; KeyVector js;
@ -208,10 +221,10 @@ class SmartStereoProjectionFactorPP : public SmartStereoProjectionFactor {
throw std::runtime_error("SmartStereoProjectionHessianFactor: this->" throw std::runtime_error("SmartStereoProjectionHessianFactor: this->"
"measured_.size() inconsistent with input"); "measured_.size() inconsistent with input");
// triangulate 3D point at given linearization point
triangulateSafe(cameras(values)); triangulateSafe(cameras(values));
if (!result_) { if (!result_) { // failed: return "empty/zero" Hessian
// failed: return"empty" Hessian
for (Matrix& m : Gs) for (Matrix& m : Gs)
m = Matrix::Zero(DimPose, DimPose); m = Matrix::Zero(DimPose, DimPose);
for (Vector& v : gs) for (Vector& v : gs)
@ -220,7 +233,7 @@ class SmartStereoProjectionFactorPP : public SmartStereoProjectionFactor {
> (keys_, Gs, gs, 0.0); > (keys_, Gs, gs, 0.0);
} }
// Jacobian could be 3D Point3 OR 2D Unit3, difference is E.cols(). // compute Jacobian given triangulated 3D Point
FBlocks Fs; FBlocks Fs;
Matrix F, E; Matrix F, E;
Vector b; Vector b;
@ -231,26 +244,26 @@ class SmartStereoProjectionFactorPP : public SmartStereoProjectionFactor {
for (size_t i = 0; i < Fs.size(); i++) for (size_t i = 0; i < Fs.size(); i++)
Fs[i] = noiseModel_->Whiten(Fs[i]); Fs[i] = noiseModel_->Whiten(Fs[i]);
// build augmented hessian // build augmented Hessian (with last row/column being the information vector)
Matrix3 P; Matrix3 P;
Cameras::ComputePointCovariance<3>(P, E, lambda, diagonalDamping); Cameras::ComputePointCovariance<3>(P, E, lambda, diagonalDamping);
// marginalize point // marginalize point: note - we reuse the standard SchurComplement function
SymmetricBlockMatrix augmentedHessian = // SymmetricBlockMatrix augmentedHessian =
Cameras::SchurComplement<3, Dim>(Fs, E, P, b); Cameras::SchurComplement<3, Dim>(Fs, E, P, b);
// now pack into an Hessian factor // now pack into an Hessian factor
std::vector<DenseIndex> dims(nrUniqueKeys + 1); // this also includes the b term std::vector<DenseIndex> dims(nrUniqueKeys + 1); // this also includes the b term
std::fill(dims.begin(), dims.end() - 1, 6); std::fill(dims.begin(), dims.end() - 1, 6);
dims.back() = 1; dims.back() = 1;
size_t nrNonuniqueKeys = world_P_body_keys_.size()
+ body_P_cam_keys_.size();
SymmetricBlockMatrix augmentedHessianUniqueKeys; SymmetricBlockMatrix augmentedHessianUniqueKeys;
// here we have to deal with the fact that some cameras may share the same extrinsic key
if (nrUniqueKeys == nrNonuniqueKeys) { // if there is 1 calibration key per camera if (nrUniqueKeys == nrNonuniqueKeys) { // if there is 1 calibration key per camera
augmentedHessianUniqueKeys = SymmetricBlockMatrix( augmentedHessianUniqueKeys = SymmetricBlockMatrix(
dims, Matrix(augmentedHessian.selfadjointView())); dims, Matrix(augmentedHessian.selfadjointView()));
} else { // if multiple cameras share a calibration } else { // if multiple cameras share a calibration we have to rearrange
// the results of the Schur complement matrix
std::vector<DenseIndex> nonuniqueDims(nrNonuniqueKeys + 1); // this also includes the b term std::vector<DenseIndex> nonuniqueDims(nrNonuniqueKeys + 1); // this also includes the b term
std::fill(nonuniqueDims.begin(), nonuniqueDims.end() - 1, 6); std::fill(nonuniqueDims.begin(), nonuniqueDims.end() - 1, 6);
nonuniqueDims.back() = 1; nonuniqueDims.back() = 1;
@ -275,6 +288,7 @@ class SmartStereoProjectionFactorPP : public SmartStereoProjectionFactor {
dims, Matrix::Zero(6 * nrUniqueKeys + 1, 6 * nrUniqueKeys + 1)); dims, Matrix::Zero(6 * nrUniqueKeys + 1, 6 * nrUniqueKeys + 1));
// add contributions for each key: note this loops over the hessian with nonUnique keys (augmentedHessian) // add contributions for each key: note this loops over the hessian with nonUnique keys (augmentedHessian)
// and populates an Hessian that only includes the unique keys (that is what we want to return)
for (size_t i = 0; i < nrNonuniqueKeys; i++) { // rows for (size_t i = 0; i < nrNonuniqueKeys; i++) { // rows
Key key_i = nonuniqueKeys.at(i); Key key_i = nonuniqueKeys.at(i);
@ -303,10 +317,10 @@ class SmartStereoProjectionFactorPP : public SmartStereoProjectionFactor {
} }
} }
} }
// update bottom right element of the matrix
augmentedHessianUniqueKeys.updateDiagonalBlock( augmentedHessianUniqueKeys.updateDiagonalBlock(
nrUniqueKeys, augmentedHessian.diagonalBlock(nrNonuniqueKeys)); nrUniqueKeys, augmentedHessian.diagonalBlock(nrNonuniqueKeys));
} }
return boost::make_shared < RegularHessianFactor<DimPose> return boost::make_shared < RegularHessianFactor<DimPose>
> (keys_, augmentedHessianUniqueKeys); > (keys_, augmentedHessianUniqueKeys);
} }