comments and some extra tests
							parent
							
								
									45cd8e5772
								
							
						
					
					
						commit
						3fd6d40faf
					
				|  | @ -35,23 +35,32 @@ Index<4, 'B'> B; | |||
| /* ************************************************************************* */ | ||||
| TEST(Tensor1, Basics) | ||||
| { | ||||
| 	// you can create 1-tensors corresponding to 2D homogeneous points
 | ||||
| 	// using the function point2h in projectiveGeometry.*
 | ||||
| 	Point2h p = point2h(1, 2, 3), q = point2h(2, 4, 6); | ||||
| 
 | ||||
| 	// equality tests always take tensor expressions, not tensors themselves
 | ||||
| 	// the difference is that a tensor expression has indices
 | ||||
| 	CHECK(p(a)==p(a)) | ||||
| 	CHECK(assert_equality(p(a),p(a))) | ||||
| 	CHECK(assert_equivalent(p(a),q(a))) | ||||
| 	DOUBLES_EQUAL(sqrt(14),norm(p(a)),1e-9) | ||||
| 	CHECK(assert_equality(p(a)*2,q(a))) | ||||
| 	CHECK(assert_equivalent(p(a),q(a))) // projectively equivalent
 | ||||
| 
 | ||||
| 	// and you can take a norm, typically for normalization to the sphere
 | ||||
| 	DOUBLES_EQUAL(sqrt(14),norm(p(a)),1e-9) | ||||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| TEST( Tensor1, Incidence2D) | ||||
| { | ||||
| 	// 2D lines are created with line2h
 | ||||
| 	Line2h l = line2h(-13, 5, 1); | ||||
| 	Point2h p = point2h(1, 2, 3), q = point2h(2, 5, 1); | ||||
| 
 | ||||
| 	// incidence
 | ||||
| 	// Incidence between a line and a point is checked with simple contraction
 | ||||
| 	// It does not matter which index you use, but it has to be of dimension 3
 | ||||
| 	DOUBLES_EQUAL(l(a)*p(a),0,1e-9) | ||||
| 	DOUBLES_EQUAL(l(a)*q(a),0,1e-9) | ||||
| 	DOUBLES_EQUAL(l(b)*q(b),0,1e-9) | ||||
| 	DOUBLES_EQUAL(p(a)*l(a),0,1e-9) | ||||
| 	DOUBLES_EQUAL(q(a)*l(a),0,1e-9) | ||||
| } | ||||
|  | @ -59,10 +68,11 @@ TEST( Tensor1, Incidence2D) | |||
| /* ************************************************************************* */ | ||||
| TEST( Tensor1, Incidence3D) | ||||
| { | ||||
| 	// similar constructs exist for 3D points and planes
 | ||||
| 	Plane3h pi = plane3h(0, 1, 0, -2); | ||||
| 	Point3h P = point3h(0, 2, 0, 1), Q = point3h(1, 2, 0, 1); | ||||
| 
 | ||||
| 	// incidence
 | ||||
| 	// Incidence is checked similarly
 | ||||
| 	DOUBLES_EQUAL(pi(A)*P(A),0,1e-9) | ||||
| 	DOUBLES_EQUAL(pi(A)*Q(A),0,1e-9) | ||||
| 	DOUBLES_EQUAL(P(A)*pi(A),0,1e-9) | ||||
|  | @ -72,15 +82,33 @@ TEST( Tensor1, Incidence3D) | |||
| /* ************************************************************************* */ | ||||
| // Tensor2
 | ||||
| /* ************************************************************************* */ | ||||
| TEST( Tensor2, Outer3) | ||||
| TEST( Tensor2, Outer33) | ||||
| { | ||||
| 	Line2h l1 = line2h(1, 2, 3), l2 = line2h(1, 3, 5); | ||||
| 
 | ||||
| 	double data[3][3] = { { 1, 2, 3 }, { 2, 4, 6 }, { 3, 6, 9 } }; | ||||
| 	// We can also create tensors directly from data
 | ||||
| 	double data[3][3] = { { 1, 2, 3 }, { 3, 6, 9 }, {5, 10, 15} }; | ||||
| 	Tensor2<3, 3> expected(data); | ||||
| 	CHECK(expected(a,b) == expected(a,b)) | ||||
| 	CHECK(expected(a,b) == l1(a) * l1(b)) | ||||
| 	CHECK(expected(a,b).swap() == l1(b) * l1(a)) | ||||
| 	// in this case expected(0) == {1,2,3}
 | ||||
| 	Line2h l0 = expected(a,b)(0); | ||||
| 	CHECK(l0(a) == l1(a)) | ||||
| 
 | ||||
| 	// And we create rank 2 tensors from the outer product of two rank 1 tensors
 | ||||
| 	CHECK(expected(a,b) == l1(a) * l2(b)) | ||||
| 
 | ||||
| 	// swap just swaps how you access a tensor, but note the data is the same
 | ||||
| 	CHECK(assert_equality(expected(a,b).swap(), l2(b) * l1(a))); | ||||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| TEST( Tensor2, AnotherOuter33) | ||||
| { | ||||
| 	// first cube point from testFundamental, projected in left and right
 | ||||
| //	Point2h p = point2h(0, -1, 2), q = point2h(-2, -1, 2);
 | ||||
| //	print(p(a)*q(b));
 | ||||
| //	print(p(b)*q(a));
 | ||||
| //	print(q(a)*p(b));
 | ||||
| //	print(q(b)*p(a));
 | ||||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
|  | @ -118,6 +146,51 @@ TEST( Tensor2, ProjectiveCamera) | |||
| 	CHECK(assert_equality(p(a),M(a,A)*P(A))) | ||||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| namespace camera { | ||||
| 	// to specify the tensor M(a,A), we need to give four 2D points
 | ||||
| 	double data[4][3] = { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 }, { 10, 11, 12 } }; | ||||
| 	ProjectiveCamera M(data); | ||||
| 	Matrix matrix = Matrix_(4,3,1.,2.,3.,4.,5.,6.,7.,8.,9.,10.,11.,12.); | ||||
| 	Vector vector = Vector_( 12,1.,2.,3.,4.,5.,6.,7.,8.,9.,10.,11.,12.); | ||||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| TEST( Tensor2, reshape ) | ||||
| { | ||||
| 	// it is annoying that a camera can only be reshaped to a 4*3
 | ||||
| //	print(camera::M(a,A));
 | ||||
| 	Matrix actual = reshape(camera::M(a,A),4,3); | ||||
| 	EQUALITY(camera::matrix,actual); | ||||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| TEST( Tensor2, toVector ) | ||||
| { | ||||
| 	// Vectors are created with the leftmost indices iterating the fastest
 | ||||
| 	Vector actual = toVector(camera::M(a,A)); | ||||
| 	CHECK(assert_equal(camera::vector,actual)); | ||||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| TEST( Tensor2, reshape2 ) | ||||
| { | ||||
| 	Tensor2<3,4> actual = reshape2<3,4>(camera::vector); | ||||
| 	CHECK(assert_equality(camera::M(a,A),actual(a,A))); | ||||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| TEST( Tensor2, reshape_33_to_9 ) | ||||
| { | ||||
| 	double data[3][3] = { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } }; | ||||
| 	FundamentalMatrix F(data); | ||||
| 	Matrix matrix = Matrix_(1,9,1.,2.,3.,4.,5.,6.,7.,8.,9.); | ||||
| 	Matrix actual = reshape(F(a,b),1,9); | ||||
| 	EQUALITY(matrix,actual); | ||||
| 	Vector v = Vector_( 9,1.,2.,3.,4.,5.,6.,7.,8.,9.); | ||||
| 	CHECK(assert_equality(F(a,b),reshape2<3, 3> (v)(a,b))); | ||||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| // Tensor3
 | ||||
| /* ************************************************************************* */ | ||||
|  |  | |||
		Loading…
	
		Reference in New Issue