comments and some extra tests

release/4.3a0
Frank Dellaert 2010-09-13 03:24:35 +00:00
parent 45cd8e5772
commit 3fd6d40faf
1 changed files with 83 additions and 10 deletions

View File

@ -35,23 +35,32 @@ Index<4, 'B'> B;
/* ************************************************************************* */ /* ************************************************************************* */
TEST(Tensor1, Basics) TEST(Tensor1, Basics)
{ {
// you can create 1-tensors corresponding to 2D homogeneous points
// using the function point2h in projectiveGeometry.*
Point2h p = point2h(1, 2, 3), q = point2h(2, 4, 6); Point2h p = point2h(1, 2, 3), q = point2h(2, 4, 6);
// equality tests always take tensor expressions, not tensors themselves
// the difference is that a tensor expression has indices
CHECK(p(a)==p(a)) CHECK(p(a)==p(a))
CHECK(assert_equality(p(a),p(a))) CHECK(assert_equality(p(a),p(a)))
CHECK(assert_equivalent(p(a),q(a)))
DOUBLES_EQUAL(sqrt(14),norm(p(a)),1e-9)
CHECK(assert_equality(p(a)*2,q(a))) CHECK(assert_equality(p(a)*2,q(a)))
CHECK(assert_equivalent(p(a),q(a))) // projectively equivalent
// and you can take a norm, typically for normalization to the sphere
DOUBLES_EQUAL(sqrt(14),norm(p(a)),1e-9)
} }
/* ************************************************************************* */ /* ************************************************************************* */
TEST( Tensor1, Incidence2D) TEST( Tensor1, Incidence2D)
{ {
// 2D lines are created with line2h
Line2h l = line2h(-13, 5, 1); Line2h l = line2h(-13, 5, 1);
Point2h p = point2h(1, 2, 3), q = point2h(2, 5, 1); Point2h p = point2h(1, 2, 3), q = point2h(2, 5, 1);
// incidence // Incidence between a line and a point is checked with simple contraction
// It does not matter which index you use, but it has to be of dimension 3
DOUBLES_EQUAL(l(a)*p(a),0,1e-9) DOUBLES_EQUAL(l(a)*p(a),0,1e-9)
DOUBLES_EQUAL(l(a)*q(a),0,1e-9) DOUBLES_EQUAL(l(b)*q(b),0,1e-9)
DOUBLES_EQUAL(p(a)*l(a),0,1e-9) DOUBLES_EQUAL(p(a)*l(a),0,1e-9)
DOUBLES_EQUAL(q(a)*l(a),0,1e-9) DOUBLES_EQUAL(q(a)*l(a),0,1e-9)
} }
@ -59,10 +68,11 @@ TEST( Tensor1, Incidence2D)
/* ************************************************************************* */ /* ************************************************************************* */
TEST( Tensor1, Incidence3D) TEST( Tensor1, Incidence3D)
{ {
// similar constructs exist for 3D points and planes
Plane3h pi = plane3h(0, 1, 0, -2); Plane3h pi = plane3h(0, 1, 0, -2);
Point3h P = point3h(0, 2, 0, 1), Q = point3h(1, 2, 0, 1); Point3h P = point3h(0, 2, 0, 1), Q = point3h(1, 2, 0, 1);
// incidence // Incidence is checked similarly
DOUBLES_EQUAL(pi(A)*P(A),0,1e-9) DOUBLES_EQUAL(pi(A)*P(A),0,1e-9)
DOUBLES_EQUAL(pi(A)*Q(A),0,1e-9) DOUBLES_EQUAL(pi(A)*Q(A),0,1e-9)
DOUBLES_EQUAL(P(A)*pi(A),0,1e-9) DOUBLES_EQUAL(P(A)*pi(A),0,1e-9)
@ -72,15 +82,33 @@ TEST( Tensor1, Incidence3D)
/* ************************************************************************* */ /* ************************************************************************* */
// Tensor2 // Tensor2
/* ************************************************************************* */ /* ************************************************************************* */
TEST( Tensor2, Outer3) TEST( Tensor2, Outer33)
{ {
Line2h l1 = line2h(1, 2, 3), l2 = line2h(1, 3, 5); Line2h l1 = line2h(1, 2, 3), l2 = line2h(1, 3, 5);
double data[3][3] = { { 1, 2, 3 }, { 2, 4, 6 }, { 3, 6, 9 } }; // We can also create tensors directly from data
double data[3][3] = { { 1, 2, 3 }, { 3, 6, 9 }, {5, 10, 15} };
Tensor2<3, 3> expected(data); Tensor2<3, 3> expected(data);
CHECK(expected(a,b) == expected(a,b)) // in this case expected(0) == {1,2,3}
CHECK(expected(a,b) == l1(a) * l1(b)) Line2h l0 = expected(a,b)(0);
CHECK(expected(a,b).swap() == l1(b) * l1(a)) CHECK(l0(a) == l1(a))
// And we create rank 2 tensors from the outer product of two rank 1 tensors
CHECK(expected(a,b) == l1(a) * l2(b))
// swap just swaps how you access a tensor, but note the data is the same
CHECK(assert_equality(expected(a,b).swap(), l2(b) * l1(a)));
}
/* ************************************************************************* */
TEST( Tensor2, AnotherOuter33)
{
// first cube point from testFundamental, projected in left and right
// Point2h p = point2h(0, -1, 2), q = point2h(-2, -1, 2);
// print(p(a)*q(b));
// print(p(b)*q(a));
// print(q(a)*p(b));
// print(q(b)*p(a));
} }
/* ************************************************************************* */ /* ************************************************************************* */
@ -118,6 +146,51 @@ TEST( Tensor2, ProjectiveCamera)
CHECK(assert_equality(p(a),M(a,A)*P(A))) CHECK(assert_equality(p(a),M(a,A)*P(A)))
} }
/* ************************************************************************* */
namespace camera {
// to specify the tensor M(a,A), we need to give four 2D points
double data[4][3] = { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 }, { 10, 11, 12 } };
ProjectiveCamera M(data);
Matrix matrix = Matrix_(4,3,1.,2.,3.,4.,5.,6.,7.,8.,9.,10.,11.,12.);
Vector vector = Vector_( 12,1.,2.,3.,4.,5.,6.,7.,8.,9.,10.,11.,12.);
}
/* ************************************************************************* */
TEST( Tensor2, reshape )
{
// it is annoying that a camera can only be reshaped to a 4*3
// print(camera::M(a,A));
Matrix actual = reshape(camera::M(a,A),4,3);
EQUALITY(camera::matrix,actual);
}
/* ************************************************************************* */
TEST( Tensor2, toVector )
{
// Vectors are created with the leftmost indices iterating the fastest
Vector actual = toVector(camera::M(a,A));
CHECK(assert_equal(camera::vector,actual));
}
/* ************************************************************************* */
TEST( Tensor2, reshape2 )
{
Tensor2<3,4> actual = reshape2<3,4>(camera::vector);
CHECK(assert_equality(camera::M(a,A),actual(a,A)));
}
/* ************************************************************************* */
TEST( Tensor2, reshape_33_to_9 )
{
double data[3][3] = { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } };
FundamentalMatrix F(data);
Matrix matrix = Matrix_(1,9,1.,2.,3.,4.,5.,6.,7.,8.,9.);
Matrix actual = reshape(F(a,b),1,9);
EQUALITY(matrix,actual);
Vector v = Vector_( 9,1.,2.,3.,4.,5.,6.,7.,8.,9.);
CHECK(assert_equality(F(a,b),reshape2<3, 3> (v)(a,b)));
}
/* ************************************************************************* */ /* ************************************************************************* */
// Tensor3 // Tensor3
/* ************************************************************************* */ /* ************************************************************************* */