added robustness to triangulation
parent
4dafcc50e8
commit
3ef6974235
|
@ -182,6 +182,94 @@ TEST(triangulation, fourPoses) {
|
|||
#endif
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
TEST(triangulation, threePoses_robustNoiseModel) {
|
||||
|
||||
Pose3 pose3 = pose1 * Pose3(Rot3::Ypr(0.1, 0.2, 0.1), Point3(0.1, -2, -.1));
|
||||
PinholeCamera<Cal3_S2> camera3(pose3, *sharedCal);
|
||||
Point2 z3 = camera3.project(landmark);
|
||||
|
||||
vector<Pose3> poses;
|
||||
Point2Vector measurements;
|
||||
poses += pose1, pose2, pose3;
|
||||
measurements += z1, z2, z3;
|
||||
|
||||
// noise free, so should give exactly the landmark
|
||||
boost::optional<Point3> actual =
|
||||
triangulatePoint3<Cal3_S2>(poses, sharedCal, measurements);
|
||||
EXPECT(assert_equal(landmark, *actual, 1e-2));
|
||||
|
||||
// Add outlier
|
||||
measurements.at(0) += Point2(100, 120); // very large pixel noise!
|
||||
|
||||
// now estimate does not match landmark
|
||||
boost::optional<Point3> actual2 = //
|
||||
triangulatePoint3<Cal3_S2>(poses, sharedCal, measurements);
|
||||
// DLT is surprisingly robust, but still off (actual error is around 0.26m):
|
||||
EXPECT( (landmark - *actual2).norm() >= 0.2);
|
||||
EXPECT( (landmark - *actual2).norm() <= 0.5);
|
||||
|
||||
// Again with nonlinear optimization
|
||||
boost::optional<Point3> actual3 =
|
||||
triangulatePoint3<Cal3_S2>(poses, sharedCal, measurements, 1e-9, true);
|
||||
// result from nonlinear (but non-robust optimization) is close to DLT and still off
|
||||
EXPECT(assert_equal(*actual2, *actual3, 0.1));
|
||||
|
||||
// Again with nonlinear optimization, this time with robust loss
|
||||
auto model = noiseModel::Robust::Create(
|
||||
noiseModel::mEstimator::Huber::Create(1.345), noiseModel::Unit::Create(2));
|
||||
boost::optional<Point3> actual4 = triangulatePoint3<Cal3_S2>(
|
||||
poses, sharedCal, measurements, 1e-9, true, model);
|
||||
// using the Huber loss we now have a quite small error!! nice!
|
||||
EXPECT(assert_equal(landmark, *actual4, 0.05));
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
TEST(triangulation, fourPoses_robustNoiseModel) {
|
||||
|
||||
Pose3 pose3 = pose1 * Pose3(Rot3::Ypr(0.1, 0.2, 0.1), Point3(0.1, -2, -.1));
|
||||
PinholeCamera<Cal3_S2> camera3(pose3, *sharedCal);
|
||||
Point2 z3 = camera3.project(landmark);
|
||||
|
||||
vector<Pose3> poses;
|
||||
Point2Vector measurements;
|
||||
poses += pose1, pose1, pose2, pose3; // 2 measurements from pose 1
|
||||
measurements += z1, z1, z2, z3;
|
||||
|
||||
// noise free, so should give exactly the landmark
|
||||
boost::optional<Point3> actual =
|
||||
triangulatePoint3<Cal3_S2>(poses, sharedCal, measurements);
|
||||
EXPECT(assert_equal(landmark, *actual, 1e-2));
|
||||
|
||||
// Add outlier
|
||||
measurements.at(0) += Point2(100, 120); // very large pixel noise!
|
||||
// add noise on other measurements:
|
||||
measurements.at(1) += Point2(0.1, 0.2); // small noise
|
||||
measurements.at(2) += Point2(0.2, 0.2);
|
||||
measurements.at(3) += Point2(0.3, 0.1);
|
||||
|
||||
// now estimate does not match landmark
|
||||
boost::optional<Point3> actual2 = //
|
||||
triangulatePoint3<Cal3_S2>(poses, sharedCal, measurements);
|
||||
// DLT is surprisingly robust, but still off (actual error is around 0.17m):
|
||||
EXPECT( (landmark - *actual2).norm() >= 0.1);
|
||||
EXPECT( (landmark - *actual2).norm() <= 0.5);
|
||||
|
||||
// Again with nonlinear optimization
|
||||
boost::optional<Point3> actual3 =
|
||||
triangulatePoint3<Cal3_S2>(poses, sharedCal, measurements, 1e-9, true);
|
||||
// result from nonlinear (but non-robust optimization) is close to DLT and still off
|
||||
EXPECT(assert_equal(*actual2, *actual3, 0.1));
|
||||
|
||||
// Again with nonlinear optimization, this time with robust loss
|
||||
auto model = noiseModel::Robust::Create(
|
||||
noiseModel::mEstimator::Huber::Create(1.345), noiseModel::Unit::Create(2));
|
||||
boost::optional<Point3> actual4 = triangulatePoint3<Cal3_S2>(
|
||||
poses, sharedCal, measurements, 1e-9, true, model);
|
||||
// using the Huber loss we now have a quite small error!! nice!
|
||||
EXPECT(assert_equal(landmark, *actual4, 0.05));
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
TEST(triangulation, fourPoses_distinct_Ks) {
|
||||
Cal3_S2 K1(1500, 1200, 0, 640, 480);
|
||||
|
|
|
@ -14,6 +14,7 @@
|
|||
* @brief Functions for triangulation
|
||||
* @date July 31, 2013
|
||||
* @author Chris Beall
|
||||
* @author Luca Carlone
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
@ -105,18 +106,18 @@ template<class CALIBRATION>
|
|||
std::pair<NonlinearFactorGraph, Values> triangulationGraph(
|
||||
const std::vector<Pose3>& poses, boost::shared_ptr<CALIBRATION> sharedCal,
|
||||
const Point2Vector& measurements, Key landmarkKey,
|
||||
const Point3& initialEstimate) {
|
||||
const Point3& initialEstimate,
|
||||
const SharedNoiseModel& model = nullptr) {
|
||||
Values values;
|
||||
values.insert(landmarkKey, initialEstimate); // Initial landmark value
|
||||
NonlinearFactorGraph graph;
|
||||
static SharedNoiseModel unit2(noiseModel::Unit::Create(2));
|
||||
static SharedNoiseModel prior_model(noiseModel::Isotropic::Sigma(6, 1e-6));
|
||||
for (size_t i = 0; i < measurements.size(); i++) {
|
||||
const Pose3& pose_i = poses[i];
|
||||
typedef PinholePose<CALIBRATION> Camera;
|
||||
Camera camera_i(pose_i, sharedCal);
|
||||
graph.emplace_shared<TriangulationFactor<Camera> > //
|
||||
(camera_i, measurements[i], unit2, landmarkKey);
|
||||
(camera_i, measurements[i], model? model : unit2, landmarkKey);
|
||||
}
|
||||
return std::make_pair(graph, values);
|
||||
}
|
||||
|
@ -134,7 +135,8 @@ template<class CAMERA>
|
|||
std::pair<NonlinearFactorGraph, Values> triangulationGraph(
|
||||
const CameraSet<CAMERA>& cameras,
|
||||
const typename CAMERA::MeasurementVector& measurements, Key landmarkKey,
|
||||
const Point3& initialEstimate) {
|
||||
const Point3& initialEstimate,
|
||||
const SharedNoiseModel& model = nullptr) {
|
||||
Values values;
|
||||
values.insert(landmarkKey, initialEstimate); // Initial landmark value
|
||||
NonlinearFactorGraph graph;
|
||||
|
@ -143,7 +145,7 @@ std::pair<NonlinearFactorGraph, Values> triangulationGraph(
|
|||
for (size_t i = 0; i < measurements.size(); i++) {
|
||||
const CAMERA& camera_i = cameras[i];
|
||||
graph.emplace_shared<TriangulationFactor<CAMERA> > //
|
||||
(camera_i, measurements[i], unit, landmarkKey);
|
||||
(camera_i, measurements[i], model? model : unit, landmarkKey);
|
||||
}
|
||||
return std::make_pair(graph, values);
|
||||
}
|
||||
|
@ -169,13 +171,14 @@ GTSAM_EXPORT Point3 optimize(const NonlinearFactorGraph& graph,
|
|||
template<class CALIBRATION>
|
||||
Point3 triangulateNonlinear(const std::vector<Pose3>& poses,
|
||||
boost::shared_ptr<CALIBRATION> sharedCal,
|
||||
const Point2Vector& measurements, const Point3& initialEstimate) {
|
||||
const Point2Vector& measurements, const Point3& initialEstimate,
|
||||
const SharedNoiseModel& model = nullptr) {
|
||||
|
||||
// Create a factor graph and initial values
|
||||
Values values;
|
||||
NonlinearFactorGraph graph;
|
||||
boost::tie(graph, values) = triangulationGraph<CALIBRATION> //
|
||||
(poses, sharedCal, measurements, Symbol('p', 0), initialEstimate);
|
||||
(poses, sharedCal, measurements, Symbol('p', 0), initialEstimate, model);
|
||||
|
||||
return optimize(graph, values, Symbol('p', 0));
|
||||
}
|
||||
|
@ -190,13 +193,14 @@ Point3 triangulateNonlinear(const std::vector<Pose3>& poses,
|
|||
template<class CAMERA>
|
||||
Point3 triangulateNonlinear(
|
||||
const CameraSet<CAMERA>& cameras,
|
||||
const typename CAMERA::MeasurementVector& measurements, const Point3& initialEstimate) {
|
||||
const typename CAMERA::MeasurementVector& measurements, const Point3& initialEstimate,
|
||||
const SharedNoiseModel& model = nullptr) {
|
||||
|
||||
// Create a factor graph and initial values
|
||||
Values values;
|
||||
NonlinearFactorGraph graph;
|
||||
boost::tie(graph, values) = triangulationGraph<CAMERA> //
|
||||
(cameras, measurements, Symbol('p', 0), initialEstimate);
|
||||
(cameras, measurements, Symbol('p', 0), initialEstimate, model);
|
||||
|
||||
return optimize(graph, values, Symbol('p', 0));
|
||||
}
|
||||
|
@ -239,7 +243,8 @@ template<class CALIBRATION>
|
|||
Point3 triangulatePoint3(const std::vector<Pose3>& poses,
|
||||
boost::shared_ptr<CALIBRATION> sharedCal,
|
||||
const Point2Vector& measurements, double rank_tol = 1e-9,
|
||||
bool optimize = false) {
|
||||
bool optimize = false,
|
||||
const SharedNoiseModel& model = nullptr) {
|
||||
|
||||
assert(poses.size() == measurements.size());
|
||||
if (poses.size() < 2)
|
||||
|
@ -254,7 +259,7 @@ Point3 triangulatePoint3(const std::vector<Pose3>& poses,
|
|||
// Then refine using non-linear optimization
|
||||
if (optimize)
|
||||
point = triangulateNonlinear<CALIBRATION> //
|
||||
(poses, sharedCal, measurements, point);
|
||||
(poses, sharedCal, measurements, point, model);
|
||||
|
||||
#ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION
|
||||
// verify that the triangulated point lies in front of all cameras
|
||||
|
@ -284,7 +289,8 @@ template<class CAMERA>
|
|||
Point3 triangulatePoint3(
|
||||
const CameraSet<CAMERA>& cameras,
|
||||
const typename CAMERA::MeasurementVector& measurements, double rank_tol = 1e-9,
|
||||
bool optimize = false) {
|
||||
bool optimize = false,
|
||||
const SharedNoiseModel& model = nullptr) {
|
||||
|
||||
size_t m = cameras.size();
|
||||
assert(measurements.size() == m);
|
||||
|
@ -298,7 +304,7 @@ Point3 triangulatePoint3(
|
|||
|
||||
// The n refine using non-linear optimization
|
||||
if (optimize)
|
||||
point = triangulateNonlinear<CAMERA>(cameras, measurements, point);
|
||||
point = triangulateNonlinear<CAMERA>(cameras, measurements, point, model);
|
||||
|
||||
#ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION
|
||||
// verify that the triangulated point lies in front of all cameras
|
||||
|
@ -317,9 +323,10 @@ template<class CALIBRATION>
|
|||
Point3 triangulatePoint3(
|
||||
const CameraSet<PinholeCamera<CALIBRATION> >& cameras,
|
||||
const Point2Vector& measurements, double rank_tol = 1e-9,
|
||||
bool optimize = false) {
|
||||
bool optimize = false,
|
||||
const SharedNoiseModel& model = nullptr) {
|
||||
return triangulatePoint3<PinholeCamera<CALIBRATION> > //
|
||||
(cameras, measurements, rank_tol, optimize);
|
||||
(cameras, measurements, rank_tol, optimize, model);
|
||||
}
|
||||
|
||||
struct GTSAM_EXPORT TriangulationParameters {
|
||||
|
@ -341,20 +348,29 @@ struct GTSAM_EXPORT TriangulationParameters {
|
|||
*/
|
||||
double dynamicOutlierRejectionThreshold;
|
||||
|
||||
SharedNoiseModel noiseModel; ///< used in the nonlinear triangulation
|
||||
|
||||
bool invDepthLinearTriangulation; ///< if set to true, we use an inverse depth alternative to DL
|
||||
|
||||
/**
|
||||
* Constructor
|
||||
* @param rankTol tolerance used to check if point triangulation is degenerate
|
||||
* @param enableEPI if true refine triangulation with embedded LM iterations
|
||||
* @param landmarkDistanceThreshold flag as degenerate if point further than this
|
||||
* @param dynamicOutlierRejectionThreshold or if average error larger than this
|
||||
* @param invDepthLinearTriangulation use inverse depth approach to linear triangulation
|
||||
*
|
||||
*/
|
||||
TriangulationParameters(const double _rankTolerance = 1.0,
|
||||
const bool _enableEPI = false, double _landmarkDistanceThreshold = -1,
|
||||
double _dynamicOutlierRejectionThreshold = -1) :
|
||||
double _dynamicOutlierRejectionThreshold = -1,
|
||||
const SharedNoiseModel& _noiseModel = nullptr,
|
||||
const bool _invDepthLinearTriangulation = false) :
|
||||
rankTolerance(_rankTolerance), enableEPI(_enableEPI), //
|
||||
landmarkDistanceThreshold(_landmarkDistanceThreshold), //
|
||||
dynamicOutlierRejectionThreshold(_dynamicOutlierRejectionThreshold) {
|
||||
dynamicOutlierRejectionThreshold(_dynamicOutlierRejectionThreshold),
|
||||
noiseModel(_noiseModel),
|
||||
invDepthLinearTriangulation(_invDepthLinearTriangulation){
|
||||
}
|
||||
|
||||
// stream to output
|
||||
|
@ -366,6 +382,9 @@ struct GTSAM_EXPORT TriangulationParameters {
|
|||
<< std::endl;
|
||||
os << "dynamicOutlierRejectionThreshold = "
|
||||
<< p.dynamicOutlierRejectionThreshold << std::endl;
|
||||
os << "noise model" << std::endl;
|
||||
os << "invDepthLinearTriangulation = " << p.invDepthLinearTriangulation
|
||||
<< std::endl;
|
||||
return os;
|
||||
}
|
||||
|
||||
|
@ -379,6 +398,7 @@ private:
|
|||
ar & BOOST_SERIALIZATION_NVP(enableEPI);
|
||||
ar & BOOST_SERIALIZATION_NVP(landmarkDistanceThreshold);
|
||||
ar & BOOST_SERIALIZATION_NVP(dynamicOutlierRejectionThreshold);
|
||||
ar & BOOST_SERIALIZATION_NVP(invDepthLinearTriangulation);
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -468,8 +488,9 @@ TriangulationResult triangulateSafe(const CameraSet<CAMERA>& cameras,
|
|||
else
|
||||
// We triangulate the 3D position of the landmark
|
||||
try {
|
||||
Point3 point = triangulatePoint3<CAMERA>(cameras, measured,
|
||||
params.rankTolerance, params.enableEPI);
|
||||
Point3 point =
|
||||
triangulatePoint3<CAMERA>(cameras, measured, params.rankTolerance,
|
||||
params.enableEPI, params.noiseModel);
|
||||
|
||||
// Check landmark distance and re-projection errors to avoid outliers
|
||||
size_t i = 0;
|
||||
|
|
Loading…
Reference in New Issue