Sync with C++ example
parent
399a81911e
commit
3e9ceda062
|
@ -0,0 +1,50 @@
|
|||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
% Atlanta, Georgia 30332-0415
|
||||
% All Rights Reserved
|
||||
% Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
%
|
||||
% See LICENSE for the license information
|
||||
%
|
||||
% @brief Example of a simple 2D localization example
|
||||
% @author Frank Dellaert
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
%% Assumptions
|
||||
% - Robot poses are facing along the X axis (horizontal, to the right in 2D)
|
||||
% - The robot moves 2 meters each step
|
||||
% - The robot is on a grid, moving 2 meters each step
|
||||
|
||||
%% Create the graph (defined in pose2SLAM.h, derived from NonlinearFactorGraph)
|
||||
graph = pose2SLAMGraph;
|
||||
|
||||
%% Add a Gaussian prior on pose x_1
|
||||
priorMean = gtsamPose2(0.0, 0.0, 0.0); % prior mean is at origin
|
||||
priorNoise = gtsamSharedNoiseModel_Sigmas([0.3; 0.3; 0.1]); % 30cm std on x,y, 0.1 rad on theta
|
||||
graph.addPrior(1, priorMean, priorNoise); % add directly to graph
|
||||
|
||||
%% Add two odometry factors
|
||||
odometry = gtsamPose2(2.0, 0.0, 0.0); % create a measurement for both factors (the same in this case)
|
||||
odometryNoise = gtsamSharedNoiseModel_Sigmas([0.2; 0.2; 0.1]); % 20cm std on x,y, 0.1 rad on theta
|
||||
graph.addOdometry(1, 2, odometry, odometryNoise);
|
||||
graph.addOdometry(2, 3, odometry, odometryNoise);
|
||||
|
||||
%% print
|
||||
graph.print(sprintf('\nFactor graph:\n'));
|
||||
|
||||
%% Initialize to noisy points
|
||||
initialEstimate = pose2SLAMValues;
|
||||
initialEstimate.insertPose(1, gtsamPose2(0.5, 0.0, 0.2));
|
||||
initialEstimate.insertPose(2, gtsamPose2(2.3, 0.1,-0.2));
|
||||
initialEstimate.insertPose(3, gtsamPose2(4.1, 0.1, 0.1));
|
||||
initialEstimate.print(sprintf('\nInitial estimate:\n '));
|
||||
|
||||
%% Optimize using Levenberg-Marquardt optimization with an ordering from colamd
|
||||
result = graph.optimize(initialEstimate);
|
||||
result.print(sprintf('\nFinal result:\n '));
|
||||
|
||||
%% Use an explicit Optimizer object so we can query the marginals
|
||||
% marginals = gtsamMarginals(graph, result);
|
||||
% marginals.marginalCovariance(pose2SLAMPoseKey(1))
|
||||
% marginals.marginalCovariance(pose2SLAMPoseKey(2))
|
||||
% marginals.marginalCovariance(pose2SLAMPoseKey(3))
|
Loading…
Reference in New Issue