coriolisExample: added basic IMU inference and fixed a plotting bug
parent
f327a4ab46
commit
3e7e4d19f6
|
@ -1,7 +1,7 @@
|
|||
%% coriolisExample.m
|
||||
% Author(s): David Jensen (david.jensen@gtri.gatech.edu)
|
||||
% This script demonstrates the relationship between object motion in inertial and rotating reference frames.
|
||||
% For this example, we consider a fixed (inertial) reference frame located at the center of the earth and initially
|
||||
% For this example, we consider a fixed (inertial) reference frame located at the center of the earth and initially
|
||||
% coincident with the rotating ECEF reference frame (X towards 0 longitude, Y towards 90 longitude, Z towards 90 latitude),
|
||||
% which rotates with the earth.
|
||||
% A body is moving in the positive Z-direction and positive Y-direction with respect to the fixed reference frame.
|
||||
|
@ -14,16 +14,29 @@ close all
|
|||
|
||||
import gtsam.*;
|
||||
|
||||
addpath(genpath('./Libraries'))
|
||||
|
||||
%% General configuration
|
||||
deltaT = 0.1;
|
||||
timeElapsed = 10;
|
||||
times = 0:deltaT:timeElapsed;
|
||||
|
||||
%omega = [0;0;7.292115e-5]; % Earth Rotation
|
||||
omega = [0;0;5*pi/10];
|
||||
%omega = [0;0;5*pi/10];
|
||||
omega = [0;0;0];
|
||||
omegaFixed = [0;0;0];
|
||||
velocity = [0;0;0]; % initially not moving
|
||||
accelFixed = [0;0.1;0.1]; % accelerate in the positive z-direction
|
||||
initialPosition = [0; 1.05; 0]; % start along the positive x-axis
|
||||
IMUinBody = Pose3;
|
||||
g = [0;0;0]; % Gravity, will need to fix this b/c of ECEF frame
|
||||
zeroBias = imuBias.ConstantBias(zeros(3,1), zeros(3,1));
|
||||
IMU_metadata.AccelerometerSigma = 1e-5;
|
||||
IMU_metadata.GyroscopeSigma = 1e-7;
|
||||
IMU_metadata.IntegrationSigma = 1e-10;
|
||||
sigma_init_x = noiseModel.Isotropic.Sigma(6, 1e-10);
|
||||
sigma_init_v = noiseModel.Isotropic.Sigma(3, 1e-10);
|
||||
sigma_init_b = noiseModel.Isotropic.Sigma(6, 1e-10);
|
||||
|
||||
%% Initial state of the body in the fixed in rotating frames should be the same
|
||||
currentPoseFixedGT = Pose3(Rot3, Point3(initialPosition));
|
||||
|
@ -33,52 +46,127 @@ currentPoseRotatingGT = currentPoseFixedGT;
|
|||
currentPoseRotatingFrame = Pose3;
|
||||
|
||||
%% Initialize storage variables
|
||||
positionsFixedGT = zeros(3, length(times)+1);
|
||||
positionsRotatingGT = zeros(3, length(times)+1);
|
||||
|
||||
positionsFixedGT(:,1) = currentPoseFixedGT.translation.vector;
|
||||
positionsRotatingGT(:,1) = currentPoseRotatingGT.translation.vector;
|
||||
positionsFixedGT = zeros(3, length(times));
|
||||
positionsRotatingGT = zeros(3, length(times));
|
||||
|
||||
changePoseRotatingFrame = Pose3.Expmap([omega*deltaT; 0; 0; 0]);
|
||||
|
||||
poses(1).p = currentPoseRotatingFrame.translation.vector;
|
||||
poses(1).R = currentPoseRotatingFrame.rotation.matrix;
|
||||
|
||||
h = figure(1);
|
||||
|
||||
%% Main loop: iterate through
|
||||
i = 2;
|
||||
for t = times
|
||||
%% Create ground truth trajectory
|
||||
% Update the position and velocity
|
||||
% x_t = x_0 + v_0*dt + 1/2*a_0*dt^2
|
||||
% v_t = v_0 + a_0*dt
|
||||
currentPositionFixedGT = Point3(currentPoseFixedGT.translation.vector ...
|
||||
+ currentVelocityFixedGT * deltaT + 0.5 * accelFixed * deltaT * deltaT);
|
||||
currentVelocityFixedGT = currentVelocityFixedGT + accelFixed * deltaT;
|
||||
positionsEstimates = zeros(3,length(times)+1);
|
||||
|
||||
% Solver object
|
||||
isamParams = ISAM2Params;
|
||||
isamParams.setFactorization('CHOLESKY');
|
||||
isamParams.setRelinearizeSkip(10);
|
||||
isam = gtsam.ISAM2(isamParams);
|
||||
newFactors = NonlinearFactorGraph;
|
||||
newValues = Values;
|
||||
|
||||
|
||||
%% Main loop: iterate through
|
||||
for i = 1:length(times)
|
||||
t = times(i);
|
||||
|
||||
currentPoseFixedGT = Pose3(Rot3, currentPositionFixedGT);
|
||||
% Create keys for current state
|
||||
currentPoseKey = symbol('x', i);
|
||||
currentVelKey = symbol('v', i);
|
||||
currentBiasKey = symbol('b', i);
|
||||
|
||||
% Rotate pose in fixed frame to get pose in rotating frame
|
||||
currentPoseRotatingFrame = currentPoseRotatingFrame.compose(changePoseRotatingFrame);
|
||||
currentPoseRotatingGT = currentPoseFixedGT.transform_to(currentPoseRotatingFrame);
|
||||
|
||||
% Store GT (ground truth) poses
|
||||
positionsFixedGT(:,i) = currentPoseFixedGT.translation.vector;
|
||||
positionsRotatingGT(:,i) = currentPoseRotatingGT.translation.vector;
|
||||
poses(i).p = currentPoseRotatingFrame.translation.vector;
|
||||
poses(i).R = currentPoseRotatingFrame.rotation.matrix;
|
||||
|
||||
% incremental plotting for animation
|
||||
if(i == 1)
|
||||
positionsFixedGT(:,1) = currentPoseFixedGT.translation.vector;
|
||||
positionsRotatingGT(:,1) = currentPoseRotatingGT.translation.vector;
|
||||
poses(1).p = currentPoseRotatingFrame.translation.vector;
|
||||
poses(1).R = currentPoseRotatingFrame.rotation.matrix;
|
||||
|
||||
currentPoseGlobal = currentPoseFixedGT;
|
||||
currentVelocityGlobal = LieVector(currentVelocityFixedGT);
|
||||
|
||||
% Set Priors
|
||||
newValues.insert(currentPoseKey, currentPoseGlobal);
|
||||
newValues.insert(currentVelKey, currentVelocityGlobal);
|
||||
newValues.insert(currentBiasKey, zeroBias);
|
||||
newFactors.add(PriorFactorPose3(currentPoseKey, currentPoseGlobal, sigma_init_x));
|
||||
newFactors.add(PriorFactorLieVector(currentVelKey, currentVelocityGlobal, sigma_init_v));
|
||||
newFactors.add(PriorFactorConstantBias(currentBiasKey, zeroBias, sigma_init_b));
|
||||
|
||||
else
|
||||
|
||||
%% Create ground truth trajectory
|
||||
% Update the position and velocity
|
||||
% x_t = x_0 + v_0*dt + 1/2*a_0*dt^2
|
||||
% v_t = v_0 + a_0*dt
|
||||
currentPositionFixedGT = Point3(currentPoseFixedGT.translation.vector ...
|
||||
+ currentVelocityFixedGT * deltaT + 0.5 * accelFixed * deltaT * deltaT);
|
||||
currentVelocityFixedGT = currentVelocityFixedGT + accelFixed * deltaT;
|
||||
|
||||
currentPoseFixedGT = Pose3(Rot3, currentPositionFixedGT);
|
||||
|
||||
% Rotate pose in fixed frame to get pose in rotating frame
|
||||
currentPoseRotatingFrame = currentPoseRotatingFrame.compose(changePoseRotatingFrame);
|
||||
currentPoseRotatingGT = currentPoseFixedGT.transform_to(currentPoseRotatingFrame);
|
||||
|
||||
% Store GT (ground truth) poses
|
||||
positionsFixedGT(:,i) = currentPoseFixedGT.translation.vector;
|
||||
positionsRotatingGT(:,i) = currentPoseRotatingGT.translation.vector;
|
||||
poses(i).p = currentPoseRotatingFrame.translation.vector;
|
||||
poses(i).R = currentPoseRotatingFrame.rotation.matrix;
|
||||
|
||||
%% Estimate trajectory in rotating frame using the ground truth
|
||||
% measurements
|
||||
% Instantiate preintegrated measurements class
|
||||
currentSummarizedMeasurement = gtsam.ImuFactorPreintegratedMeasurements( ...
|
||||
zeroBias, IMU_metadata.AccelerometerSigma.^2 * eye(3), ...
|
||||
IMU_metadata.GyroscopeSigma.^2 * eye(3), IMU_metadata.IntegrationSigma.^2 * eye(3));
|
||||
% Add measurement
|
||||
currentSummarizedMeasurement.integrateMeasurement(accelFixed, omegaFixed, deltaT);
|
||||
% Add factors to graph
|
||||
newFactors.add(ImuFactor( ...
|
||||
currentPoseKey-1, currentVelKey-1, ...
|
||||
currentPoseKey, currentVelKey, ...
|
||||
currentBiasKey-1, currentSummarizedMeasurement, g, omega));
|
||||
|
||||
%newFactors.add(PriorFactorConstantBias(currentBiasKey, zeroBias, sigma_init_b));
|
||||
newFactors.add(BetweenFactorConstantBias(currentBiasKey-1, currentBiasKey, imuBias.ConstantBias(zeros(3,1), zeros(3,1)), ...
|
||||
noiseModel.Isotropic.Sigma(6, 1e-10)));
|
||||
|
||||
% Add values to the graph
|
||||
newValues.insert(currentPoseKey, currentPoseGlobal);
|
||||
newValues.insert(currentVelKey, currentVelocityGlobal);
|
||||
newValues.insert(currentBiasKey, zeroBias);
|
||||
|
||||
%newFactors.print('');
|
||||
%newValues.print('');
|
||||
|
||||
%% Solve factor graph
|
||||
if(i > 1)
|
||||
isam.update(newFactors, newValues);
|
||||
newFactors = NonlinearFactorGraph;
|
||||
newValues = Values;
|
||||
|
||||
currentPoseGlobal = isam.calculateEstimate(currentPoseKey);
|
||||
currentVelocityGlobal = isam.calculateEstimate(currentVelKey);
|
||||
currentBias = isam.calculateEstimate(currentBiasKey);
|
||||
|
||||
positionsEstimates(:,i) = currentPoseGlobal.translation.vector;
|
||||
%velocitiesEstimates(:,i) = currentVelocityGlobal;
|
||||
end
|
||||
end
|
||||
%% incremental plotting for animation (ground truth)
|
||||
figure(h)
|
||||
plot_trajectory(poses(i),1, '-k', 'Rotating Frame',0.1,0.75,1)
|
||||
hold on;
|
||||
plot3(positionsFixedGT(1,:), positionsFixedGT(2,:), positionsFixedGT(3,:));
|
||||
plot3(positionsRotatingGT(1,:), positionsRotatingGT(2,:), positionsRotatingGT(3,:), '-r');
|
||||
plot3(positionsFixedGT(1,1:i), positionsFixedGT(2,1:i), positionsFixedGT(3,1:i));
|
||||
plot3(positionsFixedGT(1,1), positionsFixedGT(2,1), positionsFixedGT(3,1), 'o');
|
||||
plot3(positionsFixedGT(1,end), positionsFixedGT(2,end), positionsFixedGT(3,end), 'x');
|
||||
|
||||
plot3(positionsRotatingGT(1,1:i), positionsRotatingGT(2,1:i), positionsRotatingGT(3,1:i), '-r');
|
||||
plot3(positionsRotatingGT(1,1), positionsRotatingGT(2,1), positionsRotatingGT(3,1), 'or');
|
||||
plot3(positionsRotatingGT(1,end), positionsRotatingGT(2,end), positionsRotatingGT(3,end), 'xr');
|
||||
|
||||
plot3(positionsEstimates(1,1:i), positionsEstimates(2,1:i), positionsEstimates(3,1:i), '-g');
|
||||
plot3(positionsEstimates(1,1), positionsEstimates(2,1), positionsEstimates(3,1), 'og');
|
||||
plot3(positionsEstimates(1,end), positionsEstimates(2,end), positionsEstimates(3,end), 'xg');
|
||||
|
||||
hold off;
|
||||
xlabel('X axis')
|
||||
ylabel('Y axis')
|
||||
|
@ -99,16 +187,16 @@ plot3(positionsFixedGT(1,:), positionsFixedGT(2,:), positionsFixedGT(3,:));
|
|||
plot3(positionsRotatingGT(1,:), positionsRotatingGT(2,:), positionsRotatingGT(3,:), '-r');
|
||||
|
||||
% beginning and end points of Fixed
|
||||
plot3(positionsFixedGT(1,1), positionsFixedGT(2,1), positionsFixedGT(3,1), 'o');
|
||||
plot3(positionsFixedGT(1,end), positionsFixedGT(2,end), positionsFixedGT(3,end), 'x');
|
||||
plot3(positionsFixedGT(1,1), positionsFixedGT(2,1), positionsFixedGT(3,1), 'x');
|
||||
plot3(positionsFixedGT(1,end), positionsFixedGT(2,end), positionsFixedGT(3,end), 'o');
|
||||
|
||||
% beginning and end points of Rotating
|
||||
plot3(positionsRotatingGT(1,1), positionsRotatingGT(2,1), positionsRotatingGT(3,1), 'or');
|
||||
plot3(positionsRotatingGT(1,end), positionsRotatingGT(2,end), positionsRotatingGT(3,end), 'xr');
|
||||
plot3(positionsRotatingGT(1,1), positionsRotatingGT(2,1), positionsRotatingGT(3,1), 'xr');
|
||||
plot3(positionsRotatingGT(1,end), positionsRotatingGT(2,end), positionsRotatingGT(3,end), 'or');
|
||||
|
||||
xlabel('X axis')
|
||||
ylabel('Y axis')
|
||||
zlabel('Z axis')
|
||||
axis equal
|
||||
grid on;
|
||||
hold off;
|
||||
hold off;
|
Loading…
Reference in New Issue