Merge pull request #255 from borglab/feature/python-plotting

Python plotting upgrades
release/4.3a0
Frank Dellaert 2020-05-09 16:40:05 -04:00 committed by GitHub
commit 3e6d360ff8
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 158 additions and 33 deletions

View File

@ -10,13 +10,17 @@ A structure-from-motion problem on a simulated dataset
"""
from __future__ import print_function
import gtsam
import matplotlib.pyplot as plt
import numpy as np
import gtsam
from gtsam.examples import SFMdata
from gtsam.gtsam import (Cal3_S2, DoglegOptimizer,
GenericProjectionFactorCal3_S2, NonlinearFactorGraph,
Point3, Pose3, PriorFactorPoint3, PriorFactorPose3,
Rot3, PinholeCameraCal3_S2, Values)
GenericProjectionFactorCal3_S2, Marginals,
NonlinearFactorGraph, Point3, Pose3,
PriorFactorPoint3, PriorFactorPose3, Rot3,
SimpleCamera, Values)
from gtsam.utils import plot
def symbol(name: str, index: int) -> int:
@ -94,12 +98,10 @@ def main():
# Intentionally initialize the variables off from the ground truth
initial_estimate = Values()
for i, pose in enumerate(poses):
r = Rot3.Rodrigues(-0.1, 0.2, 0.25)
t = Point3(0.05, -0.10, 0.20)
transformed_pose = pose.compose(Pose3(r, t))
transformed_pose = pose.retract(0.1*np.random.randn(6,1))
initial_estimate.insert(symbol('x', i), transformed_pose)
for j, point in enumerate(points):
transformed_point = Point3(point.vector() + np.array([-0.25, 0.20, 0.15]))
transformed_point = Point3(point.vector() + 0.1*np.random.randn(3))
initial_estimate.insert(symbol('l', j), transformed_point)
initial_estimate.print_('Initial Estimates:\n')
@ -113,6 +115,11 @@ def main():
print('initial error = {}'.format(graph.error(initial_estimate)))
print('final error = {}'.format(graph.error(result)))
marginals = Marginals(graph, result)
plot.plot_3d_points(1, result, marginals=marginals)
plot.plot_trajectory(1, result, marginals=marginals, scale=8)
plot.set_axes_equal(1)
plt.show()
if __name__ == '__main__':
main()

View File

@ -25,14 +25,15 @@ def createPoints():
def createPoses(K):
# Create the set of ground-truth poses
radius = 30.0
radius = 40.0
height = 10.0
angles = np.linspace(0, 2*np.pi, 8, endpoint=False)
up = gtsam.Point3(0, 0, 1)
target = gtsam.Point3(0, 0, 0)
poses = []
for theta in angles:
position = gtsam.Point3(radius*np.cos(theta),
radius*np.sin(theta), 0.0)
radius*np.sin(theta), height)
camera = gtsam.PinholeCameraCal3_S2.Lookat(position, target, up, K)
poses.append(camera.pose())
return poses

View File

@ -3,6 +3,74 @@
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import patches
from mpl_toolkits.mplot3d import Axes3D
import gtsam
def set_axes_equal(fignum):
"""
Make axes of 3D plot have equal scale so that spheres appear as spheres,
cubes as cubes, etc.. This is one possible solution to Matplotlib's
ax.set_aspect('equal') and ax.axis('equal') not working for 3D.
Input
ax: a matplotlib axis, e.g., as output from plt.gca().
"""
fig = plt.figure(fignum)
ax = fig.gca(projection='3d')
limits = np.array([
ax.get_xlim3d(),
ax.get_ylim3d(),
ax.get_zlim3d(),
])
origin = np.mean(limits, axis=1)
radius = 0.5 * np.max(np.abs(limits[:, 1] - limits[:, 0]))
ax.set_xlim3d([origin[0] - radius, origin[0] + radius])
ax.set_ylim3d([origin[1] - radius, origin[1] + radius])
ax.set_zlim3d([origin[2] - radius, origin[2] + radius])
def ellipsoid(xc, yc, zc, rx, ry, rz, n):
"""Numpy equivalent of Matlab's ellipsoid function"""
u = np.linspace(0, 2*np.pi, n+1)
v = np.linspace(0, np.pi, n+1)
x = -rx * np.outer(np.cos(u), np.sin(v)).T
y = -ry * np.outer(np.sin(u), np.sin(v)).T
z = -rz * np.outer(np.ones_like(u), np.cos(v)).T
return x, y, z
def plot_covariance_ellipse_3d(axes, origin, P, scale=1, n=8, alpha=0.5):
"""
Plots a Gaussian as an uncertainty ellipse
Based on Maybeck Vol 1, page 366
k=2.296 corresponds to 1 std, 68.26% of all probability
k=11.82 corresponds to 3 std, 99.74% of all probability
"""
k = 11.82
U, S, _ = np.linalg.svd(P)
radii = k * np.sqrt(S)
radii = radii * scale
rx, ry, rz = radii
# generate data for "unrotated" ellipsoid
xc, yc, zc = ellipsoid(0, 0, 0, rx, ry, rz, n)
# rotate data with orientation matrix U and center c
data = np.kron(U[:, 0:1], xc) + np.kron(U[:, 1:2], yc) + \
np.kron(U[:, 2:3], zc)
n = data.shape[1]
x = data[0:n, :] + origin[0]
y = data[n:2*n, :] + origin[1]
z = data[2*n:, :] + origin[2]
axes.plot_surface(x, y, z, alpha=alpha, cmap='hot')
def plot_pose2_on_axes(axes, pose, axis_length=0.1, covariance=None):
@ -35,6 +103,7 @@ def plot_pose2_on_axes(axes, pose, axis_length=0.1, covariance=None):
np.rad2deg(angle), fill=False)
axes.add_patch(e1)
def plot_pose2(fignum, pose, axis_length=0.1, covariance=None):
"""Plot a 2D pose on given figure with given 'axis_length'."""
# get figure object
@ -43,19 +112,21 @@ def plot_pose2(fignum, pose, axis_length=0.1, covariance=None):
plot_pose2_on_axes(axes, pose, axis_length, covariance)
def plot_point3_on_axes(axes, point, linespec):
def plot_point3_on_axes(axes, point, linespec, P=None):
"""Plot a 3D point on given axis 'axes' with given 'linespec'."""
axes.plot([point.x()], [point.y()], [point.z()], linespec)
if P is not None:
plot_covariance_ellipse_3d(axes, point.vector(), P)
def plot_point3(fignum, point, linespec):
def plot_point3(fignum, point, linespec, P=None):
"""Plot a 3D point on given figure with given 'linespec'."""
fig = plt.figure(fignum)
axes = fig.gca(projection='3d')
plot_point3_on_axes(axes, point, linespec)
plot_point3_on_axes(axes, point, linespec, P)
def plot_3d_points(fignum, values, linespec, marginals=None):
def plot_3d_points(fignum, values, linespec="g*", marginals=None):
"""
Plots the Point3s in 'values', with optional covariances.
Finds all the Point3 objects in the given Values object and plots them.
@ -68,23 +139,25 @@ def plot_3d_points(fignum, values, linespec, marginals=None):
# Plot points and covariance matrices
for i in range(keys.size()):
try:
p = values.atPoint3(keys.at(i))
# if haveMarginals
# P = marginals.marginalCovariance(key);
# gtsam.plot_point3(p, linespec, P);
# else
plot_point3(fignum, p, linespec)
key = keys.at(i)
point = values.atPoint3(key)
if marginals is not None:
P = marginals.marginalCovariance(key);
else:
P = None
plot_point3(fignum, point, linespec, P)
except RuntimeError:
continue
# I guess it's not a Point3
def plot_pose3_on_axes(axes, pose, axis_length=0.1):
def plot_pose3_on_axes(axes, pose, P=None, scale=1, axis_length=0.1):
"""Plot a 3D pose on given axis 'axes' with given 'axis_length'."""
# get rotation and translation (center)
gRp = pose.rotation().matrix() # rotation from pose to global
t = pose.translation()
origin = np.array([t.x(), t.y(), t.z()])
origin = pose.translation().vector()
# draw the camera axes
x_axis = origin + gRp[:, 0] * axis_length
@ -100,17 +173,61 @@ def plot_pose3_on_axes(axes, pose, axis_length=0.1):
axes.plot(line[:, 0], line[:, 1], line[:, 2], 'b-')
# plot the covariance
# TODO (dellaert): make this work
# if (nargin>2) && (~isempty(P))
# pPp = P(4:6,4:6); % covariance matrix in pose coordinate frame
# gPp = gRp*pPp*gRp'; % convert the covariance matrix to global coordinate frame
# gtsam.covarianceEllipse3D(origin,gPp);
# end
if P is not None:
# covariance matrix in pose coordinate frame
pPp = P[3:6, 3:6]
# convert the covariance matrix to global coordinate frame
gPp = gRp @ pPp @ gRp.T
plot_covariance_ellipse_3d(axes, origin, gPp)
def plot_pose3(fignum, pose, axis_length=0.1):
def plot_pose3(fignum, pose, P, axis_length=0.1):
"""Plot a 3D pose on given figure with given 'axis_length'."""
# get figure object
fig = plt.figure(fignum)
axes = fig.gca(projection='3d')
plot_pose3_on_axes(axes, pose, axis_length)
plot_pose3_on_axes(axes, pose, P=P, axis_length=axis_length)
def plot_trajectory(fignum, values, scale=1, marginals=None):
pose3Values = gtsam.allPose3s(values)
keys = gtsam.KeyVector(pose3Values.keys())
lastIndex = None
for i in range(keys.size()):
key = keys.at(i)
try:
pose = pose3Values.atPose3(key)
except:
print("Warning: no Pose3 at key: {0}".format(key))
if lastIndex is not None:
lastKey = keys.at(lastIndex)
try:
lastPose = pose3Values.atPose3(lastKey)
except:
print("Warning: no Pose3 at key: {0}".format(lastKey))
pass
if marginals:
P = marginals.marginalCovariance(lastKey)
else:
P = None
plot_pose3(fignum, lastPose, P, scale)
lastIndex = i
# Draw final pose
if lastIndex is not None:
lastKey = keys.at(lastIndex)
try:
lastPose = pose3Values.atPose3(lastKey)
if marginals:
P = marginals.marginalCovariance(lastKey)
else:
P = None
plot_pose3(fignum, lastPose, P, scale)
except:
pass

View File

@ -22,8 +22,8 @@ end
% rotate data with orientation matrix U and center M
data = kron(e(:,1),xc) + kron(e(:,2),yc) + kron(e(:,3),zc);
n = size(data,2);
x = data(1:n,:)+c(1);
y = data(n+1:2*n,:)+c(2);
x = data(1:n,:)+c(1);
y = data(n+1:2*n,:)+c(2);
z = data(2*n+1:end,:)+c(3);
% now plot the rotated ellipse