commit
3e6d360ff8
|
@ -10,13 +10,17 @@ A structure-from-motion problem on a simulated dataset
|
|||
"""
|
||||
from __future__ import print_function
|
||||
|
||||
import gtsam
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
import gtsam
|
||||
from gtsam.examples import SFMdata
|
||||
from gtsam.gtsam import (Cal3_S2, DoglegOptimizer,
|
||||
GenericProjectionFactorCal3_S2, NonlinearFactorGraph,
|
||||
Point3, Pose3, PriorFactorPoint3, PriorFactorPose3,
|
||||
Rot3, PinholeCameraCal3_S2, Values)
|
||||
GenericProjectionFactorCal3_S2, Marginals,
|
||||
NonlinearFactorGraph, Point3, Pose3,
|
||||
PriorFactorPoint3, PriorFactorPose3, Rot3,
|
||||
SimpleCamera, Values)
|
||||
from gtsam.utils import plot
|
||||
|
||||
|
||||
def symbol(name: str, index: int) -> int:
|
||||
|
@ -94,12 +98,10 @@ def main():
|
|||
# Intentionally initialize the variables off from the ground truth
|
||||
initial_estimate = Values()
|
||||
for i, pose in enumerate(poses):
|
||||
r = Rot3.Rodrigues(-0.1, 0.2, 0.25)
|
||||
t = Point3(0.05, -0.10, 0.20)
|
||||
transformed_pose = pose.compose(Pose3(r, t))
|
||||
transformed_pose = pose.retract(0.1*np.random.randn(6,1))
|
||||
initial_estimate.insert(symbol('x', i), transformed_pose)
|
||||
for j, point in enumerate(points):
|
||||
transformed_point = Point3(point.vector() + np.array([-0.25, 0.20, 0.15]))
|
||||
transformed_point = Point3(point.vector() + 0.1*np.random.randn(3))
|
||||
initial_estimate.insert(symbol('l', j), transformed_point)
|
||||
initial_estimate.print_('Initial Estimates:\n')
|
||||
|
||||
|
@ -113,6 +115,11 @@ def main():
|
|||
print('initial error = {}'.format(graph.error(initial_estimate)))
|
||||
print('final error = {}'.format(graph.error(result)))
|
||||
|
||||
marginals = Marginals(graph, result)
|
||||
plot.plot_3d_points(1, result, marginals=marginals)
|
||||
plot.plot_trajectory(1, result, marginals=marginals, scale=8)
|
||||
plot.set_axes_equal(1)
|
||||
plt.show()
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
|
|
@ -25,14 +25,15 @@ def createPoints():
|
|||
|
||||
def createPoses(K):
|
||||
# Create the set of ground-truth poses
|
||||
radius = 30.0
|
||||
radius = 40.0
|
||||
height = 10.0
|
||||
angles = np.linspace(0, 2*np.pi, 8, endpoint=False)
|
||||
up = gtsam.Point3(0, 0, 1)
|
||||
target = gtsam.Point3(0, 0, 0)
|
||||
poses = []
|
||||
for theta in angles:
|
||||
position = gtsam.Point3(radius*np.cos(theta),
|
||||
radius*np.sin(theta), 0.0)
|
||||
radius*np.sin(theta), height)
|
||||
camera = gtsam.PinholeCameraCal3_S2.Lookat(position, target, up, K)
|
||||
poses.append(camera.pose())
|
||||
return poses
|
||||
|
|
|
@ -3,6 +3,74 @@
|
|||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib import patches
|
||||
from mpl_toolkits.mplot3d import Axes3D
|
||||
|
||||
import gtsam
|
||||
|
||||
|
||||
def set_axes_equal(fignum):
|
||||
"""
|
||||
Make axes of 3D plot have equal scale so that spheres appear as spheres,
|
||||
cubes as cubes, etc.. This is one possible solution to Matplotlib's
|
||||
ax.set_aspect('equal') and ax.axis('equal') not working for 3D.
|
||||
Input
|
||||
ax: a matplotlib axis, e.g., as output from plt.gca().
|
||||
"""
|
||||
fig = plt.figure(fignum)
|
||||
ax = fig.gca(projection='3d')
|
||||
|
||||
limits = np.array([
|
||||
ax.get_xlim3d(),
|
||||
ax.get_ylim3d(),
|
||||
ax.get_zlim3d(),
|
||||
])
|
||||
|
||||
origin = np.mean(limits, axis=1)
|
||||
radius = 0.5 * np.max(np.abs(limits[:, 1] - limits[:, 0]))
|
||||
|
||||
ax.set_xlim3d([origin[0] - radius, origin[0] + radius])
|
||||
ax.set_ylim3d([origin[1] - radius, origin[1] + radius])
|
||||
ax.set_zlim3d([origin[2] - radius, origin[2] + radius])
|
||||
|
||||
|
||||
def ellipsoid(xc, yc, zc, rx, ry, rz, n):
|
||||
"""Numpy equivalent of Matlab's ellipsoid function"""
|
||||
u = np.linspace(0, 2*np.pi, n+1)
|
||||
v = np.linspace(0, np.pi, n+1)
|
||||
x = -rx * np.outer(np.cos(u), np.sin(v)).T
|
||||
y = -ry * np.outer(np.sin(u), np.sin(v)).T
|
||||
z = -rz * np.outer(np.ones_like(u), np.cos(v)).T
|
||||
|
||||
return x, y, z
|
||||
|
||||
|
||||
def plot_covariance_ellipse_3d(axes, origin, P, scale=1, n=8, alpha=0.5):
|
||||
"""
|
||||
Plots a Gaussian as an uncertainty ellipse
|
||||
|
||||
Based on Maybeck Vol 1, page 366
|
||||
k=2.296 corresponds to 1 std, 68.26% of all probability
|
||||
k=11.82 corresponds to 3 std, 99.74% of all probability
|
||||
"""
|
||||
k = 11.82
|
||||
U, S, _ = np.linalg.svd(P)
|
||||
|
||||
radii = k * np.sqrt(S)
|
||||
radii = radii * scale
|
||||
rx, ry, rz = radii
|
||||
|
||||
# generate data for "unrotated" ellipsoid
|
||||
xc, yc, zc = ellipsoid(0, 0, 0, rx, ry, rz, n)
|
||||
|
||||
# rotate data with orientation matrix U and center c
|
||||
data = np.kron(U[:, 0:1], xc) + np.kron(U[:, 1:2], yc) + \
|
||||
np.kron(U[:, 2:3], zc)
|
||||
n = data.shape[1]
|
||||
x = data[0:n, :] + origin[0]
|
||||
y = data[n:2*n, :] + origin[1]
|
||||
z = data[2*n:, :] + origin[2]
|
||||
|
||||
axes.plot_surface(x, y, z, alpha=alpha, cmap='hot')
|
||||
|
||||
|
||||
def plot_pose2_on_axes(axes, pose, axis_length=0.1, covariance=None):
|
||||
|
@ -35,6 +103,7 @@ def plot_pose2_on_axes(axes, pose, axis_length=0.1, covariance=None):
|
|||
np.rad2deg(angle), fill=False)
|
||||
axes.add_patch(e1)
|
||||
|
||||
|
||||
def plot_pose2(fignum, pose, axis_length=0.1, covariance=None):
|
||||
"""Plot a 2D pose on given figure with given 'axis_length'."""
|
||||
# get figure object
|
||||
|
@ -43,19 +112,21 @@ def plot_pose2(fignum, pose, axis_length=0.1, covariance=None):
|
|||
plot_pose2_on_axes(axes, pose, axis_length, covariance)
|
||||
|
||||
|
||||
def plot_point3_on_axes(axes, point, linespec):
|
||||
def plot_point3_on_axes(axes, point, linespec, P=None):
|
||||
"""Plot a 3D point on given axis 'axes' with given 'linespec'."""
|
||||
axes.plot([point.x()], [point.y()], [point.z()], linespec)
|
||||
if P is not None:
|
||||
plot_covariance_ellipse_3d(axes, point.vector(), P)
|
||||
|
||||
|
||||
def plot_point3(fignum, point, linespec):
|
||||
def plot_point3(fignum, point, linespec, P=None):
|
||||
"""Plot a 3D point on given figure with given 'linespec'."""
|
||||
fig = plt.figure(fignum)
|
||||
axes = fig.gca(projection='3d')
|
||||
plot_point3_on_axes(axes, point, linespec)
|
||||
plot_point3_on_axes(axes, point, linespec, P)
|
||||
|
||||
|
||||
def plot_3d_points(fignum, values, linespec, marginals=None):
|
||||
def plot_3d_points(fignum, values, linespec="g*", marginals=None):
|
||||
"""
|
||||
Plots the Point3s in 'values', with optional covariances.
|
||||
Finds all the Point3 objects in the given Values object and plots them.
|
||||
|
@ -68,23 +139,25 @@ def plot_3d_points(fignum, values, linespec, marginals=None):
|
|||
# Plot points and covariance matrices
|
||||
for i in range(keys.size()):
|
||||
try:
|
||||
p = values.atPoint3(keys.at(i))
|
||||
# if haveMarginals
|
||||
# P = marginals.marginalCovariance(key);
|
||||
# gtsam.plot_point3(p, linespec, P);
|
||||
# else
|
||||
plot_point3(fignum, p, linespec)
|
||||
key = keys.at(i)
|
||||
point = values.atPoint3(key)
|
||||
if marginals is not None:
|
||||
P = marginals.marginalCovariance(key);
|
||||
else:
|
||||
P = None
|
||||
|
||||
plot_point3(fignum, point, linespec, P)
|
||||
|
||||
except RuntimeError:
|
||||
continue
|
||||
# I guess it's not a Point3
|
||||
|
||||
|
||||
def plot_pose3_on_axes(axes, pose, axis_length=0.1):
|
||||
def plot_pose3_on_axes(axes, pose, P=None, scale=1, axis_length=0.1):
|
||||
"""Plot a 3D pose on given axis 'axes' with given 'axis_length'."""
|
||||
# get rotation and translation (center)
|
||||
gRp = pose.rotation().matrix() # rotation from pose to global
|
||||
t = pose.translation()
|
||||
origin = np.array([t.x(), t.y(), t.z()])
|
||||
origin = pose.translation().vector()
|
||||
|
||||
# draw the camera axes
|
||||
x_axis = origin + gRp[:, 0] * axis_length
|
||||
|
@ -100,17 +173,61 @@ def plot_pose3_on_axes(axes, pose, axis_length=0.1):
|
|||
axes.plot(line[:, 0], line[:, 1], line[:, 2], 'b-')
|
||||
|
||||
# plot the covariance
|
||||
# TODO (dellaert): make this work
|
||||
# if (nargin>2) && (~isempty(P))
|
||||
# pPp = P(4:6,4:6); % covariance matrix in pose coordinate frame
|
||||
# gPp = gRp*pPp*gRp'; % convert the covariance matrix to global coordinate frame
|
||||
# gtsam.covarianceEllipse3D(origin,gPp);
|
||||
# end
|
||||
if P is not None:
|
||||
# covariance matrix in pose coordinate frame
|
||||
pPp = P[3:6, 3:6]
|
||||
# convert the covariance matrix to global coordinate frame
|
||||
gPp = gRp @ pPp @ gRp.T
|
||||
plot_covariance_ellipse_3d(axes, origin, gPp)
|
||||
|
||||
|
||||
def plot_pose3(fignum, pose, axis_length=0.1):
|
||||
def plot_pose3(fignum, pose, P, axis_length=0.1):
|
||||
"""Plot a 3D pose on given figure with given 'axis_length'."""
|
||||
# get figure object
|
||||
fig = plt.figure(fignum)
|
||||
axes = fig.gca(projection='3d')
|
||||
plot_pose3_on_axes(axes, pose, axis_length)
|
||||
plot_pose3_on_axes(axes, pose, P=P, axis_length=axis_length)
|
||||
|
||||
def plot_trajectory(fignum, values, scale=1, marginals=None):
|
||||
pose3Values = gtsam.allPose3s(values)
|
||||
keys = gtsam.KeyVector(pose3Values.keys())
|
||||
lastIndex = None
|
||||
|
||||
for i in range(keys.size()):
|
||||
key = keys.at(i)
|
||||
try:
|
||||
pose = pose3Values.atPose3(key)
|
||||
except:
|
||||
print("Warning: no Pose3 at key: {0}".format(key))
|
||||
|
||||
if lastIndex is not None:
|
||||
lastKey = keys.at(lastIndex)
|
||||
try:
|
||||
lastPose = pose3Values.atPose3(lastKey)
|
||||
except:
|
||||
print("Warning: no Pose3 at key: {0}".format(lastKey))
|
||||
pass
|
||||
|
||||
if marginals:
|
||||
P = marginals.marginalCovariance(lastKey)
|
||||
else:
|
||||
P = None
|
||||
|
||||
plot_pose3(fignum, lastPose, P, scale)
|
||||
|
||||
lastIndex = i
|
||||
|
||||
# Draw final pose
|
||||
if lastIndex is not None:
|
||||
lastKey = keys.at(lastIndex)
|
||||
try:
|
||||
lastPose = pose3Values.atPose3(lastKey)
|
||||
if marginals:
|
||||
P = marginals.marginalCovariance(lastKey)
|
||||
else:
|
||||
P = None
|
||||
|
||||
plot_pose3(fignum, lastPose, P, scale)
|
||||
|
||||
except:
|
||||
pass
|
||||
|
|
|
@ -22,8 +22,8 @@ end
|
|||
% rotate data with orientation matrix U and center M
|
||||
data = kron(e(:,1),xc) + kron(e(:,2),yc) + kron(e(:,3),zc);
|
||||
n = size(data,2);
|
||||
x = data(1:n,:)+c(1);
|
||||
y = data(n+1:2*n,:)+c(2);
|
||||
x = data(1:n,:)+c(1);
|
||||
y = data(n+1:2*n,:)+c(2);
|
||||
z = data(2*n+1:end,:)+c(3);
|
||||
|
||||
% now plot the rotated ellipse
|
||||
|
|
Loading…
Reference in New Issue