VisualISAMExample in MATLAB. Doesn't look quite right...
parent
bb89cdda76
commit
3e36890fd1
|
@ -0,0 +1,106 @@
|
|||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
% Atlanta, Georgia 30332-0415
|
||||
% All Rights Reserved
|
||||
% Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
%
|
||||
% See LICENSE for the license information
|
||||
%
|
||||
% @brief A simple visual SLAM example for structure from motion
|
||||
% @author Duy-Nguyen Ta
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
%% Create a triangle target, just 3 points on a plane
|
||||
nPoints = 3;
|
||||
r = 10;
|
||||
points = {};
|
||||
for j=1:nPoints
|
||||
theta = (j-1)*2*pi/nPoints;
|
||||
points{j} = gtsamPoint3([r*cos(theta), r*sin(theta), 0]');
|
||||
end
|
||||
|
||||
%% Create camera poses on a circle around the triangle
|
||||
nCameras = 30;
|
||||
height = 10;
|
||||
r = 30;
|
||||
poses = {};
|
||||
for i=1:nCameras
|
||||
theta = (i-1)*2*pi/nCameras;
|
||||
t = gtsamPoint3([r*cos(theta), r*sin(theta), height]');
|
||||
camera = gtsamSimpleCamera_lookat(t, gtsamPoint3(), gtsamPoint3([0,0,1]'), gtsamCal3_S2())
|
||||
poses{i} = camera.pose();
|
||||
end
|
||||
odometry = poses{1}.between(poses{2});
|
||||
|
||||
poseNoise = gtsamSharedNoiseModel_Sigmas([0.001 0.001 0.001 0.1 0.1 0.1]');
|
||||
pointNoise = gtsamSharedNoiseModel_Sigma(3, 0.1);
|
||||
measurementNoise = gtsamSharedNoiseModel_Sigma(2, 1.0);
|
||||
K = gtsamCal3_S2(50,50,0,50,50);
|
||||
|
||||
%% Create an ISAM object for inference
|
||||
isam = visualSLAMISAM;
|
||||
|
||||
%% Update ISAM
|
||||
newFactors = visualSLAMGraph;
|
||||
initialEstimates = visualSLAMValues;
|
||||
for i=1:nCameras
|
||||
|
||||
% Prior for the first pose or odometry for subsequent poses
|
||||
if (i==1)
|
||||
newFactors.addPosePrior(symbol('x',1), poses{1}, poseNoise);
|
||||
else
|
||||
newFactors.addOdometry(symbol('x',i-1), symbol('x',i), odometry, poseNoise);
|
||||
end
|
||||
|
||||
% Visual measurement factors
|
||||
for j=1:nPoints
|
||||
camera = gtsamSimpleCamera(K,poses{i});
|
||||
zij = camera.project(points{j});
|
||||
newFactors.addMeasurement(zij, measurementNoise, symbol('x',i), symbol('l',j), K);
|
||||
end
|
||||
|
||||
% Initial estimates for the new pose. Also initialize points while in
|
||||
% the first frame.
|
||||
if (i==1)
|
||||
initialEstimates.insertPose(symbol('x',i), poses{i});
|
||||
for j=1:size(points,2)
|
||||
initialEstimates.insertPoint(symbol('l',j), points{j});
|
||||
end
|
||||
else
|
||||
%TODO: this might not be suboptimal since "result" is not the fully
|
||||
%optimized result
|
||||
prevPose = result.pose(symbol('x',i-1));
|
||||
initialEstimates.insertPose(symbol('x',i), prevPose.compose(odometry));
|
||||
end
|
||||
|
||||
% Update ISAM, only update for the second frame onward
|
||||
% Update the first frame will cause error, since it's under constrained
|
||||
if (i>=2)
|
||||
isam.update(newFactors, initialEstimates);
|
||||
emptyFactors = visualSLAMGraph;
|
||||
emptyEstimates = visualSLAMValues;
|
||||
result = isam.estimate();
|
||||
|
||||
% Plot first result
|
||||
figure(1);clf
|
||||
hold on;
|
||||
for j=1:size(points,2)
|
||||
P = isam.marginalCovariance(symbol('l',j));
|
||||
point_j = result.point(symbol('l',j));
|
||||
plot3(point_j.x, point_j.y, point_j.z,'marker','o');
|
||||
covarianceEllipse3D([point_j.x;point_j.y;point_j.z],P);
|
||||
end
|
||||
|
||||
for ii=1:i
|
||||
P = isam.marginalCovariance(symbol('x',ii));
|
||||
pose_ii = result.pose(symbol('x',ii));
|
||||
plotPose3(pose_ii,P,10);
|
||||
end
|
||||
axis([-50 50 -50 50 -50 50])
|
||||
|
||||
% Reset newFactors and initialEstimates to prepare for the next
|
||||
% update
|
||||
newFactors = visualSLAMGraph;
|
||||
initialEstimates = visualSLAMValues;
|
||||
end
|
||||
end
|
Loading…
Reference in New Issue