Merge pull request #1288 from borglab/misc/fixes
commit
3e25e7d493
|
@ -33,8 +33,6 @@ static const Point2 P(0.2, 0.7);
|
|||
static const Rot2 R = Rot2::fromAngle(0.3);
|
||||
static const double s = 4;
|
||||
|
||||
const double degree = M_PI / 180;
|
||||
|
||||
//******************************************************************************
|
||||
TEST(Similarity2, Concepts) {
|
||||
BOOST_CONCEPT_ASSERT((IsGroup<Similarity2>));
|
||||
|
|
|
@ -52,7 +52,6 @@ DiscreteKeys CollectDiscreteKeys(const DiscreteKeys &key1,
|
|||
HybridFactor::HybridFactor(const KeyVector &keys)
|
||||
: Base(keys),
|
||||
isContinuous_(true),
|
||||
nrContinuous_(keys.size()),
|
||||
continuousKeys_(keys) {}
|
||||
|
||||
/* ************************************************************************ */
|
||||
|
@ -62,7 +61,6 @@ HybridFactor::HybridFactor(const KeyVector &continuousKeys,
|
|||
isDiscrete_((continuousKeys.size() == 0) && (discreteKeys.size() != 0)),
|
||||
isContinuous_((continuousKeys.size() != 0) && (discreteKeys.size() == 0)),
|
||||
isHybrid_((continuousKeys.size() != 0) && (discreteKeys.size() != 0)),
|
||||
nrContinuous_(continuousKeys.size()),
|
||||
discreteKeys_(discreteKeys),
|
||||
continuousKeys_(continuousKeys) {}
|
||||
|
||||
|
|
|
@ -47,9 +47,6 @@ class GTSAM_EXPORT HybridFactor : public Factor {
|
|||
bool isContinuous_ = false;
|
||||
bool isHybrid_ = false;
|
||||
|
||||
// TODO(Varun) remove
|
||||
size_t nrContinuous_ = 0;
|
||||
|
||||
protected:
|
||||
// Set of DiscreteKeys for this factor.
|
||||
DiscreteKeys discreteKeys_;
|
||||
|
|
|
@ -31,9 +31,7 @@ template class EliminatableClusterTree<HybridBayesTree,
|
|||
template class JunctionTree<HybridBayesTree, HybridGaussianFactorGraph>;
|
||||
|
||||
struct HybridConstructorTraversalData {
|
||||
typedef
|
||||
typename JunctionTree<HybridBayesTree, HybridGaussianFactorGraph>::Node
|
||||
Node;
|
||||
typedef HybridJunctionTree::Node Node;
|
||||
typedef
|
||||
typename JunctionTree<HybridBayesTree,
|
||||
HybridGaussianFactorGraph>::sharedNode sharedNode;
|
||||
|
@ -62,6 +60,7 @@ struct HybridConstructorTraversalData {
|
|||
data.junctionTreeNode = boost::make_shared<Node>(node->key, node->factors);
|
||||
parentData.junctionTreeNode->addChild(data.junctionTreeNode);
|
||||
|
||||
// Add all the discrete keys in the hybrid factors to the current data
|
||||
for (HybridFactor::shared_ptr& f : node->factors) {
|
||||
for (auto& k : f->discreteKeys()) {
|
||||
data.discreteKeys.insert(k.first);
|
||||
|
@ -72,8 +71,8 @@ struct HybridConstructorTraversalData {
|
|||
}
|
||||
|
||||
// Post-order visitor function
|
||||
static void ConstructorTraversalVisitorPostAlg2(
|
||||
const boost::shared_ptr<HybridEliminationTree::Node>& ETreeNode,
|
||||
static void ConstructorTraversalVisitorPost(
|
||||
const boost::shared_ptr<HybridEliminationTree::Node>& node,
|
||||
const HybridConstructorTraversalData& data) {
|
||||
// In this post-order visitor, we combine the symbolic elimination results
|
||||
// from the elimination tree children and symbolically eliminate the current
|
||||
|
@ -86,15 +85,15 @@ struct HybridConstructorTraversalData {
|
|||
|
||||
// Do symbolic elimination for this node
|
||||
SymbolicFactors symbolicFactors;
|
||||
symbolicFactors.reserve(ETreeNode->factors.size() +
|
||||
symbolicFactors.reserve(node->factors.size() +
|
||||
data.childSymbolicFactors.size());
|
||||
// Add ETree node factors
|
||||
symbolicFactors += ETreeNode->factors;
|
||||
symbolicFactors += node->factors;
|
||||
// Add symbolic factors passed up from children
|
||||
symbolicFactors += data.childSymbolicFactors;
|
||||
|
||||
Ordering keyAsOrdering;
|
||||
keyAsOrdering.push_back(ETreeNode->key);
|
||||
keyAsOrdering.push_back(node->key);
|
||||
SymbolicConditional::shared_ptr conditional;
|
||||
SymbolicFactor::shared_ptr separatorFactor;
|
||||
boost::tie(conditional, separatorFactor) =
|
||||
|
@ -105,19 +104,19 @@ struct HybridConstructorTraversalData {
|
|||
data.parentData->childSymbolicFactors.push_back(separatorFactor);
|
||||
data.parentData->discreteKeys.merge(data.discreteKeys);
|
||||
|
||||
sharedNode node = data.junctionTreeNode;
|
||||
sharedNode jt_node = data.junctionTreeNode;
|
||||
const FastVector<SymbolicConditional::shared_ptr>& childConditionals =
|
||||
data.childSymbolicConditionals;
|
||||
node->problemSize_ = (int)(conditional->size() * symbolicFactors.size());
|
||||
jt_node->problemSize_ = (int)(conditional->size() * symbolicFactors.size());
|
||||
|
||||
// Merge our children if they are in our clique - if our conditional has
|
||||
// exactly one fewer parent than our child's conditional.
|
||||
const size_t nrParents = conditional->nrParents();
|
||||
const size_t nrChildren = node->nrChildren();
|
||||
const size_t nrChildren = jt_node->nrChildren();
|
||||
assert(childConditionals.size() == nrChildren);
|
||||
|
||||
// decide which children to merge, as index into children
|
||||
std::vector<size_t> nrChildrenFrontals = node->nrFrontalsOfChildren();
|
||||
std::vector<size_t> nrChildrenFrontals = jt_node->nrFrontalsOfChildren();
|
||||
std::vector<bool> merge(nrChildren, false);
|
||||
size_t nrFrontals = 1;
|
||||
for (size_t i = 0; i < nrChildren; i++) {
|
||||
|
@ -137,7 +136,7 @@ struct HybridConstructorTraversalData {
|
|||
}
|
||||
|
||||
// now really merge
|
||||
node->mergeChildren(merge);
|
||||
jt_node->mergeChildren(merge);
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -161,7 +160,7 @@ HybridJunctionTree::HybridJunctionTree(
|
|||
// the junction tree roots
|
||||
treeTraversal::DepthFirstForest(eliminationTree, rootData,
|
||||
Data::ConstructorTraversalVisitorPre,
|
||||
Data::ConstructorTraversalVisitorPostAlg2);
|
||||
Data::ConstructorTraversalVisitorPost);
|
||||
|
||||
// Assign roots from the dummy node
|
||||
this->addChildrenAsRoots(rootData.junctionTreeNode);
|
||||
|
|
|
@ -128,9 +128,6 @@ struct Switching {
|
|||
/// Create with given number of time steps.
|
||||
Switching(size_t K, double between_sigma = 1.0, double prior_sigma = 0.1)
|
||||
: K(K) {
|
||||
using symbol_shorthand::M;
|
||||
using symbol_shorthand::X;
|
||||
|
||||
// Create DiscreteKeys for binary K modes, modes[0] will not be used.
|
||||
for (size_t k = 0; k <= K; k++) {
|
||||
modes.emplace_back(M(k), 2);
|
||||
|
@ -175,9 +172,6 @@ struct Switching {
|
|||
// Create motion models for a given time step
|
||||
static std::vector<MotionModel::shared_ptr> motionModels(size_t k,
|
||||
double sigma = 1.0) {
|
||||
using symbol_shorthand::M;
|
||||
using symbol_shorthand::X;
|
||||
|
||||
auto noise_model = noiseModel::Isotropic::Sigma(1, sigma);
|
||||
auto still =
|
||||
boost::make_shared<MotionModel>(X(k), X(k + 1), 0.0, noise_model),
|
||||
|
|
|
@ -257,14 +257,6 @@ TEST(GaussianElimination, Eliminate_x1) {
|
|||
// Add first hybrid factor
|
||||
factors.push_back(self.linearizedFactorGraph[1]);
|
||||
|
||||
// TODO(Varun) remove this block since sum is no longer exposed.
|
||||
// // Check that sum works:
|
||||
// auto sum = factors.sum();
|
||||
// Assignment<Key> mode;
|
||||
// mode[M(1)] = 1;
|
||||
// auto actual = sum(mode); // Selects one of 2 modes.
|
||||
// EXPECT_LONGS_EQUAL(2, actual.size()); // Prior and motion model.
|
||||
|
||||
// Eliminate x1
|
||||
Ordering ordering;
|
||||
ordering += X(1);
|
||||
|
@ -289,15 +281,6 @@ TEST(HybridsGaussianElimination, Eliminate_x2) {
|
|||
factors.push_back(self.linearizedFactorGraph[1]); // involves m1
|
||||
factors.push_back(self.linearizedFactorGraph[2]); // involves m2
|
||||
|
||||
// TODO(Varun) remove this block since sum is no longer exposed.
|
||||
// // Check that sum works:
|
||||
// auto sum = factors.sum();
|
||||
// Assignment<Key> mode;
|
||||
// mode[M(1)] = 0;
|
||||
// mode[M(2)] = 1;
|
||||
// auto actual = sum(mode); // Selects one of 4 mode
|
||||
// combinations. EXPECT_LONGS_EQUAL(2, actual.size()); // 2 motion models.
|
||||
|
||||
// Eliminate x2
|
||||
Ordering ordering;
|
||||
ordering += X(2);
|
||||
|
@ -364,51 +347,10 @@ TEST(HybridGaussianElimination, EliminateHybrid_2_Variable) {
|
|||
CHECK(discreteFactor);
|
||||
EXPECT_LONGS_EQUAL(1, discreteFactor->discreteKeys().size());
|
||||
EXPECT(discreteFactor->root_->isLeaf() == false);
|
||||
|
||||
//TODO(Varun) Test emplace_discrete
|
||||
}
|
||||
|
||||
// /*
|
||||
// ****************************************************************************/
|
||||
// /// Test the toDecisionTreeFactor method
|
||||
// TEST(HybridFactorGraph, ToDecisionTreeFactor) {
|
||||
// size_t K = 3;
|
||||
|
||||
// // Provide tight sigma values so that the errors are visibly different.
|
||||
// double between_sigma = 5e-8, prior_sigma = 1e-7;
|
||||
|
||||
// Switching self(K, between_sigma, prior_sigma);
|
||||
|
||||
// // Clear out discrete factors since sum() cannot hanldle those
|
||||
// HybridGaussianFactorGraph linearizedFactorGraph(
|
||||
// self.linearizedFactorGraph.gaussianGraph(), DiscreteFactorGraph(),
|
||||
// self.linearizedFactorGraph.dcGraph());
|
||||
|
||||
// auto decisionTreeFactor = linearizedFactorGraph.toDecisionTreeFactor();
|
||||
|
||||
// auto allAssignments =
|
||||
// DiscreteValues::CartesianProduct(linearizedFactorGraph.discreteKeys());
|
||||
|
||||
// // Get the error of the discrete assignment m1=0, m2=1.
|
||||
// double actual = (*decisionTreeFactor)(allAssignments[1]);
|
||||
|
||||
// /********************************************/
|
||||
// // Create equivalent factor graph for m1=0, m2=1
|
||||
// GaussianFactorGraph graph = linearizedFactorGraph.gaussianGraph();
|
||||
|
||||
// for (auto &p : linearizedFactorGraph.dcGraph()) {
|
||||
// if (auto mixture =
|
||||
// boost::dynamic_pointer_cast<DCGaussianMixtureFactor>(p)) {
|
||||
// graph.add((*mixture)(allAssignments[1]));
|
||||
// }
|
||||
// }
|
||||
|
||||
// VectorValues values = graph.optimize();
|
||||
// double expected = graph.probPrime(values);
|
||||
// /********************************************/
|
||||
// EXPECT_DOUBLES_EQUAL(expected, actual, 1e-12);
|
||||
// // REGRESSION:
|
||||
// EXPECT_DOUBLES_EQUAL(0.6125, actual, 1e-4);
|
||||
// }
|
||||
|
||||
/****************************************************************************
|
||||
* Test partial elimination
|
||||
*/
|
||||
|
@ -428,7 +370,6 @@ TEST(HybridFactorGraph, Partial_Elimination) {
|
|||
linearizedFactorGraph.eliminatePartialSequential(ordering);
|
||||
|
||||
CHECK(hybridBayesNet);
|
||||
// GTSAM_PRINT(*hybridBayesNet); // HybridBayesNet
|
||||
EXPECT_LONGS_EQUAL(3, hybridBayesNet->size());
|
||||
EXPECT(hybridBayesNet->at(0)->frontals() == KeyVector{X(1)});
|
||||
EXPECT(hybridBayesNet->at(0)->parents() == KeyVector({X(2), M(1)}));
|
||||
|
@ -438,7 +379,6 @@ TEST(HybridFactorGraph, Partial_Elimination) {
|
|||
EXPECT(hybridBayesNet->at(2)->parents() == KeyVector({M(1), M(2)}));
|
||||
|
||||
CHECK(remainingFactorGraph);
|
||||
// GTSAM_PRINT(*remainingFactorGraph); // HybridFactorGraph
|
||||
EXPECT_LONGS_EQUAL(3, remainingFactorGraph->size());
|
||||
EXPECT(remainingFactorGraph->at(0)->keys() == KeyVector({M(1)}));
|
||||
EXPECT(remainingFactorGraph->at(1)->keys() == KeyVector({M(2), M(1)}));
|
||||
|
@ -721,13 +661,8 @@ TEST(HybridFactorGraph, DefaultDecisionTree) {
|
|||
moving = boost::make_shared<PlanarMotionModel>(X(0), X(1), odometry,
|
||||
noise_model);
|
||||
std::vector<PlanarMotionModel::shared_ptr> motion_models = {still, moving};
|
||||
// TODO(Varun) Make a templated constructor for MixtureFactor which does this?
|
||||
std::vector<NonlinearFactor::shared_ptr> components;
|
||||
for (auto&& f : motion_models) {
|
||||
components.push_back(boost::dynamic_pointer_cast<NonlinearFactor>(f));
|
||||
}
|
||||
fg.emplace_hybrid<MixtureFactor>(
|
||||
contKeys, DiscreteKeys{gtsam::DiscreteKey(M(1), 2)}, components);
|
||||
contKeys, DiscreteKeys{gtsam::DiscreteKey(M(1), 2)}, motion_models);
|
||||
|
||||
// Add Range-Bearing measurements to from X0 to L0 and X1 to L1.
|
||||
// create a noise model for the landmark measurements
|
||||
|
|
|
@ -33,7 +33,7 @@ struct ConstructorTraversalData {
|
|||
typedef typename JunctionTree<BAYESTREE, GRAPH>::sharedNode sharedNode;
|
||||
|
||||
ConstructorTraversalData* const parentData;
|
||||
sharedNode myJTNode;
|
||||
sharedNode junctionTreeNode;
|
||||
FastVector<SymbolicConditional::shared_ptr> childSymbolicConditionals;
|
||||
FastVector<SymbolicFactor::shared_ptr> childSymbolicFactors;
|
||||
|
||||
|
@ -53,8 +53,9 @@ struct ConstructorTraversalData {
|
|||
// a traversal data structure with its own JT node, and create a child
|
||||
// pointer in its parent.
|
||||
ConstructorTraversalData myData = ConstructorTraversalData(&parentData);
|
||||
myData.myJTNode = boost::make_shared<Node>(node->key, node->factors);
|
||||
parentData.myJTNode->addChild(myData.myJTNode);
|
||||
myData.junctionTreeNode =
|
||||
boost::make_shared<Node>(node->key, node->factors);
|
||||
parentData.junctionTreeNode->addChild(myData.junctionTreeNode);
|
||||
return myData;
|
||||
}
|
||||
|
||||
|
@ -91,7 +92,7 @@ struct ConstructorTraversalData {
|
|||
myData.parentData->childSymbolicConditionals.push_back(myConditional);
|
||||
myData.parentData->childSymbolicFactors.push_back(mySeparatorFactor);
|
||||
|
||||
sharedNode node = myData.myJTNode;
|
||||
sharedNode node = myData.junctionTreeNode;
|
||||
const FastVector<SymbolicConditional::shared_ptr>& childConditionals =
|
||||
myData.childSymbolicConditionals;
|
||||
node->problemSize_ = (int) (myConditional->size() * symbolicFactors.size());
|
||||
|
@ -138,14 +139,14 @@ JunctionTree<BAYESTREE, GRAPH>::JunctionTree(
|
|||
typedef typename EliminationTree<ETREE_BAYESNET, ETREE_GRAPH>::Node ETreeNode;
|
||||
typedef ConstructorTraversalData<BAYESTREE, GRAPH, ETreeNode> Data;
|
||||
Data rootData(0);
|
||||
rootData.myJTNode = boost::make_shared<typename Base::Node>(); // Make a dummy node to gather
|
||||
// the junction tree roots
|
||||
// Make a dummy node to gather the junction tree roots
|
||||
rootData.junctionTreeNode = boost::make_shared<typename Base::Node>();
|
||||
treeTraversal::DepthFirstForest(eliminationTree, rootData,
|
||||
Data::ConstructorTraversalVisitorPre,
|
||||
Data::ConstructorTraversalVisitorPostAlg2);
|
||||
|
||||
// Assign roots from the dummy node
|
||||
this->addChildrenAsRoots(rootData.myJTNode);
|
||||
this->addChildrenAsRoots(rootData.junctionTreeNode);
|
||||
|
||||
// Transfer remaining factors from elimination tree
|
||||
Base::remainingFactors_ = eliminationTree.remainingFactors();
|
||||
|
|
Loading…
Reference in New Issue