Merge pull request #1288 from borglab/misc/fixes

release/4.3a0
Varun Agrawal 2022-09-13 12:15:46 -04:00 committed by GitHub
commit 3e25e7d493
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 24 additions and 102 deletions

View File

@ -33,8 +33,6 @@ static const Point2 P(0.2, 0.7);
static const Rot2 R = Rot2::fromAngle(0.3);
static const double s = 4;
const double degree = M_PI / 180;
//******************************************************************************
TEST(Similarity2, Concepts) {
BOOST_CONCEPT_ASSERT((IsGroup<Similarity2>));

View File

@ -52,7 +52,6 @@ DiscreteKeys CollectDiscreteKeys(const DiscreteKeys &key1,
HybridFactor::HybridFactor(const KeyVector &keys)
: Base(keys),
isContinuous_(true),
nrContinuous_(keys.size()),
continuousKeys_(keys) {}
/* ************************************************************************ */
@ -62,7 +61,6 @@ HybridFactor::HybridFactor(const KeyVector &continuousKeys,
isDiscrete_((continuousKeys.size() == 0) && (discreteKeys.size() != 0)),
isContinuous_((continuousKeys.size() != 0) && (discreteKeys.size() == 0)),
isHybrid_((continuousKeys.size() != 0) && (discreteKeys.size() != 0)),
nrContinuous_(continuousKeys.size()),
discreteKeys_(discreteKeys),
continuousKeys_(continuousKeys) {}

View File

@ -47,9 +47,6 @@ class GTSAM_EXPORT HybridFactor : public Factor {
bool isContinuous_ = false;
bool isHybrid_ = false;
// TODO(Varun) remove
size_t nrContinuous_ = 0;
protected:
// Set of DiscreteKeys for this factor.
DiscreteKeys discreteKeys_;

View File

@ -31,9 +31,7 @@ template class EliminatableClusterTree<HybridBayesTree,
template class JunctionTree<HybridBayesTree, HybridGaussianFactorGraph>;
struct HybridConstructorTraversalData {
typedef
typename JunctionTree<HybridBayesTree, HybridGaussianFactorGraph>::Node
Node;
typedef HybridJunctionTree::Node Node;
typedef
typename JunctionTree<HybridBayesTree,
HybridGaussianFactorGraph>::sharedNode sharedNode;
@ -62,6 +60,7 @@ struct HybridConstructorTraversalData {
data.junctionTreeNode = boost::make_shared<Node>(node->key, node->factors);
parentData.junctionTreeNode->addChild(data.junctionTreeNode);
// Add all the discrete keys in the hybrid factors to the current data
for (HybridFactor::shared_ptr& f : node->factors) {
for (auto& k : f->discreteKeys()) {
data.discreteKeys.insert(k.first);
@ -72,8 +71,8 @@ struct HybridConstructorTraversalData {
}
// Post-order visitor function
static void ConstructorTraversalVisitorPostAlg2(
const boost::shared_ptr<HybridEliminationTree::Node>& ETreeNode,
static void ConstructorTraversalVisitorPost(
const boost::shared_ptr<HybridEliminationTree::Node>& node,
const HybridConstructorTraversalData& data) {
// In this post-order visitor, we combine the symbolic elimination results
// from the elimination tree children and symbolically eliminate the current
@ -86,15 +85,15 @@ struct HybridConstructorTraversalData {
// Do symbolic elimination for this node
SymbolicFactors symbolicFactors;
symbolicFactors.reserve(ETreeNode->factors.size() +
symbolicFactors.reserve(node->factors.size() +
data.childSymbolicFactors.size());
// Add ETree node factors
symbolicFactors += ETreeNode->factors;
symbolicFactors += node->factors;
// Add symbolic factors passed up from children
symbolicFactors += data.childSymbolicFactors;
Ordering keyAsOrdering;
keyAsOrdering.push_back(ETreeNode->key);
keyAsOrdering.push_back(node->key);
SymbolicConditional::shared_ptr conditional;
SymbolicFactor::shared_ptr separatorFactor;
boost::tie(conditional, separatorFactor) =
@ -105,19 +104,19 @@ struct HybridConstructorTraversalData {
data.parentData->childSymbolicFactors.push_back(separatorFactor);
data.parentData->discreteKeys.merge(data.discreteKeys);
sharedNode node = data.junctionTreeNode;
sharedNode jt_node = data.junctionTreeNode;
const FastVector<SymbolicConditional::shared_ptr>& childConditionals =
data.childSymbolicConditionals;
node->problemSize_ = (int)(conditional->size() * symbolicFactors.size());
jt_node->problemSize_ = (int)(conditional->size() * symbolicFactors.size());
// Merge our children if they are in our clique - if our conditional has
// exactly one fewer parent than our child's conditional.
const size_t nrParents = conditional->nrParents();
const size_t nrChildren = node->nrChildren();
const size_t nrChildren = jt_node->nrChildren();
assert(childConditionals.size() == nrChildren);
// decide which children to merge, as index into children
std::vector<size_t> nrChildrenFrontals = node->nrFrontalsOfChildren();
std::vector<size_t> nrChildrenFrontals = jt_node->nrFrontalsOfChildren();
std::vector<bool> merge(nrChildren, false);
size_t nrFrontals = 1;
for (size_t i = 0; i < nrChildren; i++) {
@ -137,7 +136,7 @@ struct HybridConstructorTraversalData {
}
// now really merge
node->mergeChildren(merge);
jt_node->mergeChildren(merge);
}
};
@ -161,7 +160,7 @@ HybridJunctionTree::HybridJunctionTree(
// the junction tree roots
treeTraversal::DepthFirstForest(eliminationTree, rootData,
Data::ConstructorTraversalVisitorPre,
Data::ConstructorTraversalVisitorPostAlg2);
Data::ConstructorTraversalVisitorPost);
// Assign roots from the dummy node
this->addChildrenAsRoots(rootData.junctionTreeNode);

View File

@ -128,9 +128,6 @@ struct Switching {
/// Create with given number of time steps.
Switching(size_t K, double between_sigma = 1.0, double prior_sigma = 0.1)
: K(K) {
using symbol_shorthand::M;
using symbol_shorthand::X;
// Create DiscreteKeys for binary K modes, modes[0] will not be used.
for (size_t k = 0; k <= K; k++) {
modes.emplace_back(M(k), 2);
@ -175,9 +172,6 @@ struct Switching {
// Create motion models for a given time step
static std::vector<MotionModel::shared_ptr> motionModels(size_t k,
double sigma = 1.0) {
using symbol_shorthand::M;
using symbol_shorthand::X;
auto noise_model = noiseModel::Isotropic::Sigma(1, sigma);
auto still =
boost::make_shared<MotionModel>(X(k), X(k + 1), 0.0, noise_model),

View File

@ -257,14 +257,6 @@ TEST(GaussianElimination, Eliminate_x1) {
// Add first hybrid factor
factors.push_back(self.linearizedFactorGraph[1]);
// TODO(Varun) remove this block since sum is no longer exposed.
// // Check that sum works:
// auto sum = factors.sum();
// Assignment<Key> mode;
// mode[M(1)] = 1;
// auto actual = sum(mode); // Selects one of 2 modes.
// EXPECT_LONGS_EQUAL(2, actual.size()); // Prior and motion model.
// Eliminate x1
Ordering ordering;
ordering += X(1);
@ -289,15 +281,6 @@ TEST(HybridsGaussianElimination, Eliminate_x2) {
factors.push_back(self.linearizedFactorGraph[1]); // involves m1
factors.push_back(self.linearizedFactorGraph[2]); // involves m2
// TODO(Varun) remove this block since sum is no longer exposed.
// // Check that sum works:
// auto sum = factors.sum();
// Assignment<Key> mode;
// mode[M(1)] = 0;
// mode[M(2)] = 1;
// auto actual = sum(mode); // Selects one of 4 mode
// combinations. EXPECT_LONGS_EQUAL(2, actual.size()); // 2 motion models.
// Eliminate x2
Ordering ordering;
ordering += X(2);
@ -364,51 +347,10 @@ TEST(HybridGaussianElimination, EliminateHybrid_2_Variable) {
CHECK(discreteFactor);
EXPECT_LONGS_EQUAL(1, discreteFactor->discreteKeys().size());
EXPECT(discreteFactor->root_->isLeaf() == false);
//TODO(Varun) Test emplace_discrete
}
// /*
// ****************************************************************************/
// /// Test the toDecisionTreeFactor method
// TEST(HybridFactorGraph, ToDecisionTreeFactor) {
// size_t K = 3;
// // Provide tight sigma values so that the errors are visibly different.
// double between_sigma = 5e-8, prior_sigma = 1e-7;
// Switching self(K, between_sigma, prior_sigma);
// // Clear out discrete factors since sum() cannot hanldle those
// HybridGaussianFactorGraph linearizedFactorGraph(
// self.linearizedFactorGraph.gaussianGraph(), DiscreteFactorGraph(),
// self.linearizedFactorGraph.dcGraph());
// auto decisionTreeFactor = linearizedFactorGraph.toDecisionTreeFactor();
// auto allAssignments =
// DiscreteValues::CartesianProduct(linearizedFactorGraph.discreteKeys());
// // Get the error of the discrete assignment m1=0, m2=1.
// double actual = (*decisionTreeFactor)(allAssignments[1]);
// /********************************************/
// // Create equivalent factor graph for m1=0, m2=1
// GaussianFactorGraph graph = linearizedFactorGraph.gaussianGraph();
// for (auto &p : linearizedFactorGraph.dcGraph()) {
// if (auto mixture =
// boost::dynamic_pointer_cast<DCGaussianMixtureFactor>(p)) {
// graph.add((*mixture)(allAssignments[1]));
// }
// }
// VectorValues values = graph.optimize();
// double expected = graph.probPrime(values);
// /********************************************/
// EXPECT_DOUBLES_EQUAL(expected, actual, 1e-12);
// // REGRESSION:
// EXPECT_DOUBLES_EQUAL(0.6125, actual, 1e-4);
// }
/****************************************************************************
* Test partial elimination
*/
@ -428,7 +370,6 @@ TEST(HybridFactorGraph, Partial_Elimination) {
linearizedFactorGraph.eliminatePartialSequential(ordering);
CHECK(hybridBayesNet);
// GTSAM_PRINT(*hybridBayesNet); // HybridBayesNet
EXPECT_LONGS_EQUAL(3, hybridBayesNet->size());
EXPECT(hybridBayesNet->at(0)->frontals() == KeyVector{X(1)});
EXPECT(hybridBayesNet->at(0)->parents() == KeyVector({X(2), M(1)}));
@ -438,7 +379,6 @@ TEST(HybridFactorGraph, Partial_Elimination) {
EXPECT(hybridBayesNet->at(2)->parents() == KeyVector({M(1), M(2)}));
CHECK(remainingFactorGraph);
// GTSAM_PRINT(*remainingFactorGraph); // HybridFactorGraph
EXPECT_LONGS_EQUAL(3, remainingFactorGraph->size());
EXPECT(remainingFactorGraph->at(0)->keys() == KeyVector({M(1)}));
EXPECT(remainingFactorGraph->at(1)->keys() == KeyVector({M(2), M(1)}));
@ -721,13 +661,8 @@ TEST(HybridFactorGraph, DefaultDecisionTree) {
moving = boost::make_shared<PlanarMotionModel>(X(0), X(1), odometry,
noise_model);
std::vector<PlanarMotionModel::shared_ptr> motion_models = {still, moving};
// TODO(Varun) Make a templated constructor for MixtureFactor which does this?
std::vector<NonlinearFactor::shared_ptr> components;
for (auto&& f : motion_models) {
components.push_back(boost::dynamic_pointer_cast<NonlinearFactor>(f));
}
fg.emplace_hybrid<MixtureFactor>(
contKeys, DiscreteKeys{gtsam::DiscreteKey(M(1), 2)}, components);
contKeys, DiscreteKeys{gtsam::DiscreteKey(M(1), 2)}, motion_models);
// Add Range-Bearing measurements to from X0 to L0 and X1 to L1.
// create a noise model for the landmark measurements

View File

@ -33,7 +33,7 @@ struct ConstructorTraversalData {
typedef typename JunctionTree<BAYESTREE, GRAPH>::sharedNode sharedNode;
ConstructorTraversalData* const parentData;
sharedNode myJTNode;
sharedNode junctionTreeNode;
FastVector<SymbolicConditional::shared_ptr> childSymbolicConditionals;
FastVector<SymbolicFactor::shared_ptr> childSymbolicFactors;
@ -53,8 +53,9 @@ struct ConstructorTraversalData {
// a traversal data structure with its own JT node, and create a child
// pointer in its parent.
ConstructorTraversalData myData = ConstructorTraversalData(&parentData);
myData.myJTNode = boost::make_shared<Node>(node->key, node->factors);
parentData.myJTNode->addChild(myData.myJTNode);
myData.junctionTreeNode =
boost::make_shared<Node>(node->key, node->factors);
parentData.junctionTreeNode->addChild(myData.junctionTreeNode);
return myData;
}
@ -91,7 +92,7 @@ struct ConstructorTraversalData {
myData.parentData->childSymbolicConditionals.push_back(myConditional);
myData.parentData->childSymbolicFactors.push_back(mySeparatorFactor);
sharedNode node = myData.myJTNode;
sharedNode node = myData.junctionTreeNode;
const FastVector<SymbolicConditional::shared_ptr>& childConditionals =
myData.childSymbolicConditionals;
node->problemSize_ = (int) (myConditional->size() * symbolicFactors.size());
@ -138,14 +139,14 @@ JunctionTree<BAYESTREE, GRAPH>::JunctionTree(
typedef typename EliminationTree<ETREE_BAYESNET, ETREE_GRAPH>::Node ETreeNode;
typedef ConstructorTraversalData<BAYESTREE, GRAPH, ETreeNode> Data;
Data rootData(0);
rootData.myJTNode = boost::make_shared<typename Base::Node>(); // Make a dummy node to gather
// the junction tree roots
// Make a dummy node to gather the junction tree roots
rootData.junctionTreeNode = boost::make_shared<typename Base::Node>();
treeTraversal::DepthFirstForest(eliminationTree, rootData,
Data::ConstructorTraversalVisitorPre,
Data::ConstructorTraversalVisitorPostAlg2);
// Assign roots from the dummy node
this->addChildrenAsRoots(rootData.myJTNode);
this->addChildrenAsRoots(rootData.junctionTreeNode);
// Transfer remaining factors from elimination tree
Base::remainingFactors_ = eliminationTree.remainingFactors();