Formatted and fixed discrete examples
parent
f280aec428
commit
3dcff34b46
|
@ -1,7 +1,4 @@
|
||||||
set (excluded_examples
|
set (excluded_examples
|
||||||
DiscreteBayesNet_FG.cpp
|
|
||||||
UGM_chain.cpp
|
|
||||||
UGM_small.cpp
|
|
||||||
elaboratePoint2KalmanFilter.cpp
|
elaboratePoint2KalmanFilter.cpp
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
|
@ -10,47 +10,57 @@
|
||||||
* -------------------------------------------------------------------------- */
|
* -------------------------------------------------------------------------- */
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @file DiscreteBayesNet_FG.cpp
|
* @file DiscreteBayesNet_graph.cpp
|
||||||
* @brief Discrete Bayes Net example using Factor Graphs
|
* @brief Discrete Bayes Net example using Factor Graphs
|
||||||
* @author Abhijit
|
* @author Abhijit
|
||||||
* @date Jun 4, 2012
|
* @date Jun 4, 2012
|
||||||
*
|
*
|
||||||
* We use the famous Rain/Cloudy/Sprinkler Example of [Russell & Norvig, 2009, p529]
|
* We use the famous Rain/Cloudy/Sprinkler Example of [Russell & Norvig, 2009,
|
||||||
* You may be familiar with other graphical model packages like BNT (available
|
* p529] You may be familiar with other graphical model packages like BNT
|
||||||
* at http://bnt.googlecode.com/svn/trunk/docs/usage.html) where this is used as an
|
* (available at http://bnt.googlecode.com/svn/trunk/docs/usage.html) where this
|
||||||
* example. The following demo is same as that in the above link, except that
|
* is used as an example. The following demo is same as that in the above link,
|
||||||
* everything is using GTSAM.
|
* except that everything is using GTSAM.
|
||||||
*/
|
*/
|
||||||
|
|
||||||
#include <gtsam/discrete/DiscreteFactorGraph.h>
|
#include <gtsam/discrete/DiscreteFactorGraph.h>
|
||||||
#include <gtsam/discrete/DiscreteSequentialSolver.h>
|
#include <gtsam/discrete/DiscreteMarginals.h>
|
||||||
|
|
||||||
#include <iomanip>
|
#include <iomanip>
|
||||||
|
|
||||||
using namespace std;
|
using namespace std;
|
||||||
using namespace gtsam;
|
using namespace gtsam;
|
||||||
|
|
||||||
int main(int argc, char **argv) {
|
int main(int argc, char **argv) {
|
||||||
|
// Define keys and a print function
|
||||||
|
Key C(1), S(2), R(3), W(4);
|
||||||
|
auto print = [=](DiscreteFactor::sharedValues values) {
|
||||||
|
cout << boolalpha << "Cloudy = " << static_cast<bool>((*values)[C])
|
||||||
|
<< " Sprinkler = " << static_cast<bool>((*values)[S])
|
||||||
|
<< " Rain = " << boolalpha << static_cast<bool>((*values)[R])
|
||||||
|
<< " WetGrass = " << static_cast<bool>((*values)[W]) << endl;
|
||||||
|
};
|
||||||
|
|
||||||
// We assume binary state variables
|
// We assume binary state variables
|
||||||
// we have 0 == "False" and 1 == "True"
|
// we have 0 == "False" and 1 == "True"
|
||||||
const size_t nrStates = 2;
|
const size_t nrStates = 2;
|
||||||
|
|
||||||
// define variables
|
// define variables
|
||||||
DiscreteKey Cloudy(1, nrStates), Sprinkler(2, nrStates), Rain(3, nrStates),
|
DiscreteKey Cloudy(C, nrStates), Sprinkler(S, nrStates), Rain(R, nrStates),
|
||||||
WetGrass(4, nrStates);
|
WetGrass(W, nrStates);
|
||||||
|
|
||||||
// create Factor Graph of the bayes net
|
// create Factor Graph of the bayes net
|
||||||
DiscreteFactorGraph graph;
|
DiscreteFactorGraph graph;
|
||||||
|
|
||||||
// add factors
|
// add factors
|
||||||
graph.add(Cloudy, "0.5 0.5"); //P(Cloudy)
|
graph.add(Cloudy, "0.5 0.5"); // P(Cloudy)
|
||||||
graph.add(Cloudy & Sprinkler, "0.5 0.5 0.9 0.1"); //P(Sprinkler | Cloudy)
|
graph.add(Cloudy & Sprinkler, "0.5 0.5 0.9 0.1"); // P(Sprinkler | Cloudy)
|
||||||
graph.add(Cloudy & Rain, "0.8 0.2 0.2 0.8"); //P(Rain | Cloudy)
|
graph.add(Cloudy & Rain, "0.8 0.2 0.2 0.8"); // P(Rain | Cloudy)
|
||||||
graph.add(Sprinkler & Rain & WetGrass,
|
graph.add(Sprinkler & Rain & WetGrass,
|
||||||
"1 0 0.1 0.9 0.1 0.9 0.001 0.99"); //P(WetGrass | Sprinkler, Rain)
|
"1 0 0.1 0.9 0.1 0.9 0.001 0.99"); // P(WetGrass | Sprinkler, Rain)
|
||||||
|
|
||||||
// Alternatively we can also create a DiscreteBayesNet, add DiscreteConditional
|
// Alternatively we can also create a DiscreteBayesNet, add
|
||||||
// factors and create a FactorGraph from it. (See testDiscreteBayesNet.cpp)
|
// DiscreteConditional factors and create a FactorGraph from it. (See
|
||||||
|
// testDiscreteBayesNet.cpp)
|
||||||
|
|
||||||
// Since this is a relatively small distribution, we can as well print
|
// Since this is a relatively small distribution, we can as well print
|
||||||
// the whole distribution..
|
// the whole distribution..
|
||||||
|
@ -63,57 +73,48 @@ int main(int argc, char **argv) {
|
||||||
for (size_t h = 0; h < nrStates; h++)
|
for (size_t h = 0; h < nrStates; h++)
|
||||||
for (size_t c = 0; c < nrStates; c++) {
|
for (size_t c = 0; c < nrStates; c++) {
|
||||||
DiscreteFactor::Values values;
|
DiscreteFactor::Values values;
|
||||||
values[Cloudy.first] = c;
|
values[C] = c;
|
||||||
values[Sprinkler.first] = h;
|
values[S] = h;
|
||||||
values[Rain.first] = m;
|
values[R] = m;
|
||||||
values[WetGrass.first] = a;
|
values[W] = a;
|
||||||
double prodPot = graph(values);
|
double prodPot = graph(values);
|
||||||
cout << boolalpha << setw(8) << (bool) c << setw(14)
|
cout << setw(8) << static_cast<bool>(c) << setw(14)
|
||||||
<< (bool) h << setw(12) << (bool) m << setw(13)
|
<< static_cast<bool>(h) << setw(12) << static_cast<bool>(m)
|
||||||
<< (bool) a << setw(16) << prodPot << endl;
|
<< setw(13) << static_cast<bool>(a) << setw(16) << prodPot
|
||||||
|
<< endl;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
// "Most Probable Explanation", i.e., configuration with largest value
|
// "Most Probable Explanation", i.e., configuration with largest value
|
||||||
DiscreteSequentialSolver solver(graph);
|
DiscreteFactor::sharedValues mpe = graph.eliminateSequential()->optimize();
|
||||||
DiscreteFactor::sharedValues optimalDecoding = solver.optimize();
|
cout << "\nMost Probable Explanation (MPE):" << endl;
|
||||||
cout <<"\nMost Probable Explanation (MPE):" << endl;
|
print(mpe);
|
||||||
cout << boolalpha << "Cloudy = " << (bool)(*optimalDecoding)[Cloudy.first]
|
|
||||||
<< " Sprinkler = " << (bool)(*optimalDecoding)[Sprinkler.first]
|
|
||||||
<< " Rain = " << boolalpha << (bool)(*optimalDecoding)[Rain.first]
|
|
||||||
<< " WetGrass = " << (bool)(*optimalDecoding)[WetGrass.first]<< endl;
|
|
||||||
|
|
||||||
|
// "Inference" We show an inference query like: probability that the Sprinkler
|
||||||
|
// was on; given that the grass is wet i.e. P( S | C=0) = ?
|
||||||
|
|
||||||
// "Inference" We show an inference query like: probability that the Sprinkler was on;
|
// add evidence that it is not Cloudy
|
||||||
// given that the grass is wet i.e. P( S | W=1) =?
|
graph.add(Cloudy, "1 0");
|
||||||
cout << "\nInference Query: Probability of Sprinkler being on given Grass is Wet" << endl;
|
|
||||||
|
|
||||||
// Method 1: we can compute the joint marginal P(S,W) and from that we can compute
|
// solve again, now with evidence
|
||||||
// P(S | W=1) = P(S,W=1)/P(W=1) We do this in following three steps..
|
DiscreteBayesNet::shared_ptr chordal = graph.eliminateSequential();
|
||||||
|
DiscreteFactor::sharedValues mpe_with_evidence = chordal->optimize();
|
||||||
|
|
||||||
//Step1: Compute P(S,W)
|
cout << "\nMPE given C=0:" << endl;
|
||||||
DiscreteFactorGraph jointFG;
|
print(mpe_with_evidence);
|
||||||
jointFG = *solver.jointFactorGraph(DiscreteKeys(Sprinkler & WetGrass).indices());
|
|
||||||
DecisionTreeFactor probSW = jointFG.product();
|
|
||||||
|
|
||||||
//Step2: Compute P(W)
|
// we can also calculate arbitrary marginals:
|
||||||
DiscreteFactor::shared_ptr probW = solver.marginalFactor(WetGrass.first);
|
DiscreteMarginals marginals(graph);
|
||||||
|
cout << "\nP(S=1|C=0):" << marginals.marginalProbabilities(Sprinkler)[1]
|
||||||
//Step3: Computer P(S | W=1) = P(S,W=1)/P(W=1)
|
<< endl;
|
||||||
DiscreteFactor::Values values;
|
cout << "\nP(R=0|C=0):" << marginals.marginalProbabilities(Rain)[0] << endl;
|
||||||
values[WetGrass.first] = 1;
|
cout << "\nP(W=1|C=0):" << marginals.marginalProbabilities(WetGrass)[1]
|
||||||
|
<< endl;
|
||||||
//print P(S=0|W=1)
|
|
||||||
values[Sprinkler.first] = 0;
|
|
||||||
cout << "P(S=0|W=1) = " << probSW(values)/(*probW)(values) << endl;
|
|
||||||
|
|
||||||
//print P(S=1|W=1)
|
|
||||||
values[Sprinkler.first] = 1;
|
|
||||||
cout << "P(S=1|W=1) = " << probSW(values)/(*probW)(values) << endl;
|
|
||||||
|
|
||||||
// TODO: Method 2 : One way is to modify the factor graph to
|
|
||||||
// incorporate the evidence node and compute the marginal
|
|
||||||
// TODO: graph.addEvidence(Cloudy,0);
|
|
||||||
|
|
||||||
|
// We can also sample from it
|
||||||
|
cout << "\n10 samples:" << endl;
|
||||||
|
for (size_t i = 0; i < 10; i++) {
|
||||||
|
DiscreteFactor::sharedValues sample = chordal->sample();
|
||||||
|
print(sample);
|
||||||
|
}
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
|
@ -10,7 +10,7 @@
|
||||||
* -------------------------------------------------------------------------- */
|
* -------------------------------------------------------------------------- */
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @file small.cpp
|
* @file UGM_chain.cpp
|
||||||
* @brief UGM (undirected graphical model) examples: chain
|
* @brief UGM (undirected graphical model) examples: chain
|
||||||
* @author Frank Dellaert
|
* @author Frank Dellaert
|
||||||
* @author Abhijit Kundu
|
* @author Abhijit Kundu
|
||||||
|
@ -19,10 +19,9 @@
|
||||||
* for more explanation. This code demos the same example using GTSAM.
|
* for more explanation. This code demos the same example using GTSAM.
|
||||||
*/
|
*/
|
||||||
|
|
||||||
#include <gtsam/discrete/DiscreteFactorGraph.h>
|
|
||||||
#include <gtsam/discrete/DiscreteSequentialSolver.h>
|
|
||||||
#include <gtsam/discrete/DiscreteMarginals.h>
|
|
||||||
#include <gtsam/base/timing.h>
|
#include <gtsam/base/timing.h>
|
||||||
|
#include <gtsam/discrete/DiscreteFactorGraph.h>
|
||||||
|
#include <gtsam/discrete/DiscreteMarginals.h>
|
||||||
|
|
||||||
#include <iomanip>
|
#include <iomanip>
|
||||||
|
|
||||||
|
@ -30,7 +29,6 @@ using namespace std;
|
||||||
using namespace gtsam;
|
using namespace gtsam;
|
||||||
|
|
||||||
int main(int argc, char** argv) {
|
int main(int argc, char** argv) {
|
||||||
|
|
||||||
// Set Number of Nodes in the Graph
|
// Set Number of Nodes in the Graph
|
||||||
const int nrNodes = 60;
|
const int nrNodes = 60;
|
||||||
|
|
||||||
|
@ -41,7 +39,7 @@ int main(int argc, char** argv) {
|
||||||
|
|
||||||
// define variables
|
// define variables
|
||||||
vector<DiscreteKey> nodes;
|
vector<DiscreteKey> nodes;
|
||||||
for (int i = 0; i < nrNodes; i++){
|
for (int i = 0; i < nrNodes; i++) {
|
||||||
DiscreteKey dk(i, nrStates);
|
DiscreteKey dk(i, nrStates);
|
||||||
nodes.push_back(dk);
|
nodes.push_back(dk);
|
||||||
}
|
}
|
||||||
|
@ -51,10 +49,10 @@ int main(int argc, char** argv) {
|
||||||
|
|
||||||
// add node potentials
|
// add node potentials
|
||||||
graph.add(nodes[0], ".3 .6 .1 0 0 0 0");
|
graph.add(nodes[0], ".3 .6 .1 0 0 0 0");
|
||||||
for (int i = 1; i < nrNodes; i++)
|
for (int i = 1; i < nrNodes; i++) graph.add(nodes[i], "1 1 1 1 1 1 1");
|
||||||
graph.add(nodes[i], "1 1 1 1 1 1 1");
|
|
||||||
|
|
||||||
const std::string edgePotential = ".08 .9 .01 0 0 0 .01 "
|
const std::string edgePotential =
|
||||||
|
".08 .9 .01 0 0 0 .01 "
|
||||||
".03 .95 .01 0 0 0 .01 "
|
".03 .95 .01 0 0 0 .01 "
|
||||||
".06 .06 .75 .05 .05 .02 .01 "
|
".06 .06 .75 .05 .05 .02 .01 "
|
||||||
"0 0 0 .3 .6 .09 .01 "
|
"0 0 0 .3 .6 .09 .01 "
|
||||||
|
@ -71,39 +69,24 @@ int main(int argc, char** argv) {
|
||||||
|
|
||||||
// "Decoding", i.e., configuration with largest value
|
// "Decoding", i.e., configuration with largest value
|
||||||
// We use sequential variable elimination
|
// We use sequential variable elimination
|
||||||
DiscreteSequentialSolver solver(graph);
|
DiscreteBayesNet::shared_ptr chordal = graph.eliminateSequential();
|
||||||
DiscreteFactor::sharedValues optimalDecoding = solver.optimize();
|
DiscreteFactor::sharedValues optimalDecoding = chordal->optimize();
|
||||||
optimalDecoding->print("\nMost Probable Explanation (optimalDecoding)\n");
|
optimalDecoding->print("\nMost Probable Explanation (optimalDecoding)\n");
|
||||||
|
|
||||||
// "Inference" Computing marginals for each node
|
// "Inference" Computing marginals for each node
|
||||||
|
|
||||||
|
|
||||||
cout << "\nComputing Node Marginals ..(Sequential Elimination)" << endl;
|
|
||||||
gttic_(Sequential);
|
|
||||||
for (vector<DiscreteKey>::iterator itr = nodes.begin(); itr != nodes.end();
|
|
||||||
++itr) {
|
|
||||||
//Compute the marginal
|
|
||||||
Vector margProbs = solver.marginalProbabilities(*itr);
|
|
||||||
|
|
||||||
//Print the marginals
|
|
||||||
cout << "Node#" << setw(4) << itr->first << " : ";
|
|
||||||
print(margProbs);
|
|
||||||
}
|
|
||||||
gttoc_(Sequential);
|
|
||||||
|
|
||||||
// Here we'll make use of DiscreteMarginals class, which makes use of
|
// Here we'll make use of DiscreteMarginals class, which makes use of
|
||||||
// bayes-tree based shortcut evaluation of marginals
|
// bayes-tree based shortcut evaluation of marginals
|
||||||
DiscreteMarginals marginals(graph);
|
DiscreteMarginals marginals(graph);
|
||||||
|
|
||||||
cout << "\nComputing Node Marginals ..(BayesTree based)" << endl;
|
cout << "\nComputing Node Marginals ..(BayesTree based)" << endl;
|
||||||
gttic_(Multifrontal);
|
gttic_(Multifrontal);
|
||||||
for (vector<DiscreteKey>::iterator itr = nodes.begin(); itr != nodes.end();
|
for (vector<DiscreteKey>::iterator it = nodes.begin(); it != nodes.end();
|
||||||
++itr) {
|
++it) {
|
||||||
//Compute the marginal
|
// Compute the marginal
|
||||||
Vector margProbs = marginals.marginalProbabilities(*itr);
|
Vector margProbs = marginals.marginalProbabilities(*it);
|
||||||
|
|
||||||
//Print the marginals
|
// Print the marginals
|
||||||
cout << "Node#" << setw(4) << itr->first << " : ";
|
cout << "Node#" << setw(4) << it->first << " : ";
|
||||||
print(margProbs);
|
print(margProbs);
|
||||||
}
|
}
|
||||||
gttoc_(Multifrontal);
|
gttoc_(Multifrontal);
|
||||||
|
@ -111,4 +94,3 @@ int main(int argc, char** argv) {
|
||||||
tictoc_print_();
|
tictoc_print_();
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -10,15 +10,16 @@
|
||||||
* -------------------------------------------------------------------------- */
|
* -------------------------------------------------------------------------- */
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @file small.cpp
|
* @file UGM_small.cpp
|
||||||
* @brief UGM (undirected graphical model) examples: small
|
* @brief UGM (undirected graphical model) examples: small
|
||||||
* @author Frank Dellaert
|
* @author Frank Dellaert
|
||||||
*
|
*
|
||||||
* See http://www.di.ens.fr/~mschmidt/Software/UGM/small.html
|
* See http://www.di.ens.fr/~mschmidt/Software/UGM/small.html
|
||||||
*/
|
*/
|
||||||
|
|
||||||
|
#include <gtsam/base/Vector.h>
|
||||||
#include <gtsam/discrete/DiscreteFactorGraph.h>
|
#include <gtsam/discrete/DiscreteFactorGraph.h>
|
||||||
#include <gtsam/discrete/DiscreteSequentialSolver.h>
|
#include <gtsam/discrete/DiscreteMarginals.h>
|
||||||
|
|
||||||
using namespace std;
|
using namespace std;
|
||||||
using namespace gtsam;
|
using namespace gtsam;
|
||||||
|
@ -61,24 +62,24 @@ int main(int argc, char** argv) {
|
||||||
|
|
||||||
// "Decoding", i.e., configuration with largest value (MPE)
|
// "Decoding", i.e., configuration with largest value (MPE)
|
||||||
// We use sequential variable elimination
|
// We use sequential variable elimination
|
||||||
DiscreteSequentialSolver solver(graph);
|
DiscreteBayesNet::shared_ptr chordal = graph.eliminateSequential();
|
||||||
DiscreteFactor::sharedValues optimalDecoding = solver.optimize();
|
DiscreteFactor::sharedValues optimalDecoding = chordal->optimize();
|
||||||
optimalDecoding->print("\noptimalDecoding");
|
optimalDecoding->print("\noptimalDecoding");
|
||||||
|
|
||||||
// "Inference" Computing marginals
|
// "Inference" Computing marginals
|
||||||
cout << "\nComputing Node Marginals .." << endl;
|
cout << "\nComputing Node Marginals .." << endl;
|
||||||
Vector margProbs;
|
DiscreteMarginals marginals(graph);
|
||||||
|
|
||||||
margProbs = solver.marginalProbabilities(Cathy);
|
Vector margProbs = marginals.marginalProbabilities(Cathy);
|
||||||
print(margProbs, "Cathy's Node Marginal:");
|
print(margProbs, "Cathy's Node Marginal:");
|
||||||
|
|
||||||
margProbs = solver.marginalProbabilities(Heather);
|
margProbs = marginals.marginalProbabilities(Heather);
|
||||||
print(margProbs, "Heather's Node Marginal");
|
print(margProbs, "Heather's Node Marginal");
|
||||||
|
|
||||||
margProbs = solver.marginalProbabilities(Mark);
|
margProbs = marginals.marginalProbabilities(Mark);
|
||||||
print(margProbs, "Mark's Node Marginal");
|
print(margProbs, "Mark's Node Marginal");
|
||||||
|
|
||||||
margProbs = solver.marginalProbabilities(Allison);
|
margProbs = marginals.marginalProbabilities(Allison);
|
||||||
print(margProbs, "Allison's Node Marginal");
|
print(margProbs, "Allison's Node Marginal");
|
||||||
|
|
||||||
return 0;
|
return 0;
|
||||||
|
|
Loading…
Reference in New Issue