Merge pull request #1884 from borglab/feature/F_matrix

Two fundamental matrix classes
release/4.3a0
Frank Dellaert 2024-10-25 20:43:50 -07:00 committed by GitHub
commit 3d622261d7
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 568 additions and 1 deletions

View File

@ -162,7 +162,7 @@ struct FixedDimension {
typedef const int value_type; typedef const int value_type;
static const int value = traits<T>::dimension; static const int value = traits<T>::dimension;
static_assert(value != Eigen::Dynamic, static_assert(value != Eigen::Dynamic,
"FixedDimension instantiated for dymanically-sized type."); "FixedDimension instantiated for dynamically-sized type.");
}; };
} // \ namespace gtsam } // \ namespace gtsam

View File

@ -0,0 +1,150 @@
/*
* @file FundamentalMatrix.cpp
* @brief FundamentalMatrix classes
* @author Frank Dellaert
* @date Oct 23, 2024
*/
#include <gtsam/geometry/FundamentalMatrix.h>
namespace gtsam {
//*************************************************************************
Point2 Transfer(const Matrix3& Fca, const Point2& pa, //
const Matrix3& Fcb, const Point2& pb) {
// Create lines in camera a from projections of the other two cameras
Vector3 line_a = Fca * Vector3(pa.x(), pa.y(), 1);
Vector3 line_b = Fcb * Vector3(pb.x(), pb.y(), 1);
// Cross the lines to find the intersection point
Vector3 intersectionPoint = line_a.cross(line_b);
// Normalize the intersection point
intersectionPoint /= intersectionPoint(2);
return intersectionPoint.head<2>(); // Return the 2D point
}
//*************************************************************************
FundamentalMatrix::FundamentalMatrix(const Matrix3& F) {
// Perform SVD
Eigen::JacobiSVD<Matrix3> svd(F, Eigen::ComputeFullU | Eigen::ComputeFullV);
// Extract U and V
Matrix3 U = svd.matrixU();
Matrix3 V = svd.matrixV();
Vector3 singularValues = svd.singularValues();
// Scale the singular values
double scale = singularValues(0);
if (scale != 0) {
singularValues /= scale; // Normalize the first singular value to 1.0
}
// Check if the third singular value is close to zero (valid F condition)
if (std::abs(singularValues(2)) > 1e-9) {
throw std::invalid_argument(
"The input matrix does not represent a valid fundamental matrix.");
}
// Ensure the second singular value is recorded as s
s_ = singularValues(1);
// Check if U is a reflection
if (U.determinant() < 0) {
U = -U;
s_ = -s_; // Change sign of scalar if U is a reflection
}
// Check if V is a reflection
if (V.determinant() < 0) {
V = -V;
s_ = -s_; // Change sign of scalar if U is a reflection
}
// Assign the rotations
U_ = Rot3(U);
V_ = Rot3(V);
}
Matrix3 FundamentalMatrix::matrix() const {
return U_.matrix() * Vector3(1, s_, 0).asDiagonal() * V_.transpose().matrix();
}
void FundamentalMatrix::print(const std::string& s) const {
std::cout << s << "U:\n"
<< U_.matrix() << "\ns: " << s_ << "\nV:\n"
<< V_.matrix() << std::endl;
}
bool FundamentalMatrix::equals(const FundamentalMatrix& other,
double tol) const {
return U_.equals(other.U_, tol) && std::abs(s_ - other.s_) < tol &&
V_.equals(other.V_, tol);
}
Vector FundamentalMatrix::localCoordinates(const FundamentalMatrix& F) const {
Vector result(7);
result.head<3>() = U_.localCoordinates(F.U_);
result(3) = F.s_ - s_; // Difference in scalar
result.tail<3>() = V_.localCoordinates(F.V_);
return result;
}
FundamentalMatrix FundamentalMatrix::retract(const Vector& delta) const {
Rot3 newU = U_.retract(delta.head<3>());
double newS = s_ + delta(3); // Update scalar
Rot3 newV = V_.retract(delta.tail<3>());
return FundamentalMatrix(newU, newS, newV);
}
//*************************************************************************
Matrix3 SimpleFundamentalMatrix::leftK() const {
Matrix3 K;
K << fa_, 0, ca_.x(), 0, fa_, ca_.y(), 0, 0, 1;
return K;
}
Matrix3 SimpleFundamentalMatrix::rightK() const {
Matrix3 K;
K << fb_, 0, cb_.x(), 0, fb_, cb_.y(), 0, 0, 1;
return K;
}
Matrix3 SimpleFundamentalMatrix::matrix() const {
return leftK().transpose().inverse() * E_.matrix() * rightK().inverse();
}
void SimpleFundamentalMatrix::print(const std::string& s) const {
std::cout << s << " E:\n"
<< E_.matrix() << "\nfa: " << fa_ << "\nfb: " << fb_
<< "\nca: " << ca_.transpose() << "\ncb: " << cb_.transpose()
<< std::endl;
}
bool SimpleFundamentalMatrix::equals(const SimpleFundamentalMatrix& other,
double tol) const {
return E_.equals(other.E_, tol) && std::abs(fa_ - other.fa_) < tol &&
std::abs(fb_ - other.fb_) < tol && (ca_ - other.ca_).norm() < tol &&
(cb_ - other.cb_).norm() < tol;
}
Vector SimpleFundamentalMatrix::localCoordinates(
const SimpleFundamentalMatrix& F) const {
Vector result(7);
result.head<5>() = E_.localCoordinates(F.E_);
result(5) = F.fa_ - fa_; // Difference in fa
result(6) = F.fb_ - fb_; // Difference in fb
return result;
}
SimpleFundamentalMatrix SimpleFundamentalMatrix::retract(
const Vector& delta) const {
EssentialMatrix newE = E_.retract(delta.head<5>());
double newFa = fa_ + delta(5); // Update fa
double newFb = fb_ + delta(6); // Update fb
return SimpleFundamentalMatrix(newE, newFa, newFb, ca_, cb_);
}
//*************************************************************************
} // namespace gtsam

View File

@ -0,0 +1,183 @@
/*
* @file FundamentalMatrix.h
* @brief FundamentalMatrix classes
* @author Frank Dellaert
* @date Oct 23, 2024
*/
#pragma once
#include <gtsam/geometry/EssentialMatrix.h>
#include <gtsam/geometry/Rot3.h>
#include <gtsam/geometry/Unit3.h>
namespace gtsam {
/**
* @class FundamentalMatrix
* @brief Represents a general fundamental matrix.
*
* This class represents a general fundamental matrix, which is a 3x3 matrix
* that describes the relationship between two images. It is parameterized by a
* left rotation U, a scalar s, and a right rotation V.
*/
class GTSAM_EXPORT FundamentalMatrix {
private:
Rot3 U_; ///< Left rotation
double s_; ///< Scalar parameter for S
Rot3 V_; ///< Right rotation
public:
/// Default constructor
FundamentalMatrix() : U_(Rot3()), s_(1.0), V_(Rot3()) {}
/**
* @brief Construct from U, V, and scalar s
*
* Initializes the FundamentalMatrix with the given left rotation U,
* scalar s, and right rotation V.
*
* @param U Left rotation matrix
* @param s Scalar parameter for the fundamental matrix
* @param V Right rotation matrix
*/
FundamentalMatrix(const Rot3& U, double s, const Rot3& V)
: U_(U), s_(s), V_(V) {}
/**
* @brief Construct from a 3x3 matrix using SVD
*
* Initializes the FundamentalMatrix by performing SVD on the given
* matrix and ensuring U and V are not reflections.
*
* @param F A 3x3 matrix representing the fundamental matrix
*/
FundamentalMatrix(const Matrix3& F);
/// Return the fundamental matrix representation
Matrix3 matrix() const;
/// @name Testable
/// @{
/// Print the FundamentalMatrix
void print(const std::string& s = "") const;
/// Check if the FundamentalMatrix is equal to another within a
/// tolerance
bool equals(const FundamentalMatrix& other, double tol = 1e-9) const;
/// @}
/// @name Manifold
/// @{
enum { dimension = 7 }; // 3 for U, 1 for s, 3 for V
inline static size_t Dim() { return dimension; }
inline size_t dim() const { return dimension; }
/// Return local coordinates with respect to another FundamentalMatrix
Vector localCoordinates(const FundamentalMatrix& F) const;
/// Retract the given vector to get a new FundamentalMatrix
FundamentalMatrix retract(const Vector& delta) const;
/// @}
};
/**
* @class SimpleFundamentalMatrix
* @brief Class for representing a simple fundamental matrix.
*
* This class represents a simple fundamental matrix, which is a
* parameterization of the essential matrix and focal lengths for left and right
* cameras. Principal points are not part of the manifold but a convenience.
*/
class GTSAM_EXPORT SimpleFundamentalMatrix {
private:
EssentialMatrix E_; ///< Essential matrix
double fa_; ///< Focal length for left camera
double fb_; ///< Focal length for right camera
Point2 ca_; ///< Principal point for left camera
Point2 cb_; ///< Principal point for right camera
public:
/// Default constructor
SimpleFundamentalMatrix()
: E_(), fa_(1.0), fb_(1.0), ca_(0.0, 0.0), cb_(0.0, 0.0) {}
/// Construct from essential matrix and focal lengths
SimpleFundamentalMatrix(const EssentialMatrix& E, //
double fa, double fb,
const Point2& ca = Point2(0.0, 0.0),
const Point2& cb = Point2(0.0, 0.0))
: E_(E), fa_(fa), fb_(fb), ca_(ca), cb_(cb) {}
/// Return the left calibration matrix
Matrix3 leftK() const;
/// Return the right calibration matrix
Matrix3 rightK() const;
/// Return the fundamental matrix representation
Matrix3 matrix() const;
/// @name Testable
/// @{
/// Print the SimpleFundamentalMatrix
void print(const std::string& s = "") const;
/// Check equality within a tolerance
bool equals(const SimpleFundamentalMatrix& other, double tol = 1e-9) const;
/// @}
/// @name Manifold
/// @{
enum { dimension = 7 }; // 5 for E, 1 for fa, 1 for fb
inline static size_t Dim() { return dimension; }
inline size_t dim() const { return dimension; }
/// Return local coordinates with respect to another SimpleFundamentalMatrix
Vector localCoordinates(const SimpleFundamentalMatrix& F) const;
/// Retract the given vector to get a new SimpleFundamentalMatrix
SimpleFundamentalMatrix retract(const Vector& delta) const;
/// @}
};
/**
* @brief Transfer projections from cameras a and b to camera c
*
* Take two fundamental matrices Fca and Fcb, and two points pa and pb, and
* returns the 2D point in view (c) where the epipolar lines intersect.
*/
GTSAM_EXPORT Point2 Transfer(const Matrix3& Fca, const Point2& pa,
const Matrix3& Fcb, const Point2& pb);
/// Represents a set of three fundamental matrices for transferring points
/// between three cameras.
template <typename F>
struct TripleF {
F Fab, Fbc, Fca;
/// Transfers a point from cameras b,c to camera a.
Point2 transferToA(const Point2& pb, const Point2& pc) {
return Transfer(Fab.matrix(), pb, Fca.matrix().transpose(), pc);
}
/// Transfers a point from camera a,c to camera b.
Point2 transferToB(const Point2& pa, const Point2& pc) {
return Transfer(Fab.matrix().transpose(), pa, Fbc.matrix(), pc);
}
/// Transfers a point from cameras a,b to camera c.
Point2 transferToC(const Point2& pa, const Point2& pb) {
return Transfer(Fca.matrix(), pa, Fbc.matrix().transpose(), pb);
}
};
template <>
struct traits<FundamentalMatrix>
: public internal::Manifold<FundamentalMatrix> {};
template <>
struct traits<SimpleFundamentalMatrix>
: public internal::Manifold<SimpleFundamentalMatrix> {};
} // namespace gtsam

View File

@ -0,0 +1,234 @@
/*
* @file testFundamentalMatrix.cpp
* @brief Test FundamentalMatrix classes
* @author Frank Dellaert
* @date October 23, 2024
*/
#include <CppUnitLite/TestHarness.h>
#include <gtsam/base/Testable.h>
#include <gtsam/geometry/FundamentalMatrix.h>
#include <gtsam/geometry/Rot3.h>
#include <gtsam/geometry/SimpleCamera.h>
#include <gtsam/geometry/Unit3.h>
using namespace std::placeholders;
using namespace std;
using namespace gtsam;
GTSAM_CONCEPT_TESTABLE_INST(FundamentalMatrix)
GTSAM_CONCEPT_MANIFOLD_INST(FundamentalMatrix)
//*************************************************************************
// Create two rotations and corresponding fundamental matrix F
Rot3 trueU = Rot3::Yaw(M_PI_2);
Rot3 trueV = Rot3::Yaw(M_PI_4);
double trueS = 0.5;
FundamentalMatrix trueF(trueU, trueS, trueV);
//*************************************************************************
TEST(FundamentalMatrix, localCoordinates) {
Vector expected = Z_7x1; // Assuming 7 dimensions for U, V, and s
Vector actual = trueF.localCoordinates(trueF);
EXPECT(assert_equal(expected, actual, 1e-8));
}
//*************************************************************************
TEST(FundamentalMatrix, retract) {
FundamentalMatrix actual = trueF.retract(Z_7x1);
EXPECT(assert_equal(trueF, actual));
}
//*************************************************************************
TEST(FundamentalMatrix, RoundTrip) {
Vector7 d;
d << 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7;
FundamentalMatrix hx = trueF.retract(d);
Vector actual = trueF.localCoordinates(hx);
EXPECT(assert_equal(d, actual, 1e-8));
}
//*************************************************************************
// Create the simplest SimpleFundamentalMatrix, a stereo pair
EssentialMatrix defaultE(Rot3(), Unit3(1, 0, 0));
Point2 zero(0.0, 0.0);
SimpleFundamentalMatrix stereoF(defaultE, 1.0, 1.0, zero, zero);
//*************************************************************************
TEST(SimpleStereo, Conversion) {
FundamentalMatrix convertedF(stereoF.matrix());
EXPECT(assert_equal(stereoF.matrix(), convertedF.matrix(), 1e-8));
}
//*************************************************************************
TEST(SimpleStereo, localCoordinates) {
Vector expected = Z_7x1;
Vector actual = stereoF.localCoordinates(stereoF);
EXPECT(assert_equal(expected, actual, 1e-8));
}
//*************************************************************************
TEST(SimpleStereo, retract) {
SimpleFundamentalMatrix actual = stereoF.retract(Z_9x1);
EXPECT(assert_equal(stereoF, actual));
}
//*************************************************************************
TEST(SimpleStereo, RoundTrip) {
Vector7 d;
d << 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7;
SimpleFundamentalMatrix hx = stereoF.retract(d);
Vector actual = stereoF.localCoordinates(hx);
EXPECT(assert_equal(d, actual, 1e-8));
}
//*************************************************************************
TEST(SimpleStereo, EpipolarLine) {
// Create a point in b
Point3 p_b(0, 2, 1);
// Convert the point to a horizontal line in a
Vector3 l_a = stereoF.matrix() * p_b;
// Check if the line is horizontal at height 2
EXPECT(assert_equal(Vector3(0, -1, 2), l_a));
}
//*************************************************************************
// Create a stereo pair, but in pixels not normalized coordinates.
// We're still using zero principal points here.
double focalLength = 1000;
SimpleFundamentalMatrix pixelStereo(defaultE, focalLength, focalLength, zero,
zero);
//*************************************************************************
TEST(PixelStereo, Conversion) {
auto expected = pixelStereo.matrix();
FundamentalMatrix convertedF(pixelStereo.matrix());
// Check equality of F-matrices up to a scale
auto actual = convertedF.matrix();
actual *= expected(1, 2) / actual(1, 2);
EXPECT(assert_equal(expected, actual, 1e-5));
}
//*************************************************************************
TEST(PixelStereo, PointInBToHorizontalLineInA) {
// Create a point in b
Point3 p_b = Point3(0, 300, 1);
// Convert the point to a horizontal line in a
Vector3 l_a = pixelStereo.matrix() * p_b;
// Check if the line is horizontal at height 2
EXPECT(assert_equal(Vector3(0, -0.001, 0.3), l_a));
}
//*************************************************************************
// Create a stereo pair with the right camera rotated 90 degrees
Rot3 aRb = Rot3::Rz(M_PI_2); // Rotate 90 degrees around the Z-axis
EssentialMatrix rotatedE(aRb, Unit3(1, 0, 0));
SimpleFundamentalMatrix rotatedPixelStereo(rotatedE, focalLength, focalLength,
zero, zero);
//*************************************************************************
TEST(RotatedPixelStereo, Conversion) {
auto expected = rotatedPixelStereo.matrix();
FundamentalMatrix convertedF(rotatedPixelStereo.matrix());
// Check equality of F-matrices up to a scale
auto actual = convertedF.matrix();
actual *= expected(1, 2) / actual(1, 2);
EXPECT(assert_equal(expected, actual, 1e-4));
}
//*************************************************************************
TEST(RotatedPixelStereo, PointInBToHorizontalLineInA) {
// Create a point in b
Point3 p_b = Point3(300, 0, 1);
// Convert the point to a horizontal line in a
Vector3 l_a = rotatedPixelStereo.matrix() * p_b;
// Check if the line is horizontal at height 2
EXPECT(assert_equal(Vector3(0, -0.001, 0.3), l_a));
}
//*************************************************************************
// Now check that principal points also survive conversion
Point2 principalPoint(640 / 2, 480 / 2);
SimpleFundamentalMatrix stereoWithPrincipalPoints(rotatedE, focalLength,
focalLength, principalPoint,
principalPoint);
//*************************************************************************
TEST(stereoWithPrincipalPoints, Conversion) {
auto expected = stereoWithPrincipalPoints.matrix();
FundamentalMatrix convertedF(stereoWithPrincipalPoints.matrix());
// Check equality of F-matrices up to a scale
auto actual = convertedF.matrix();
actual *= expected(1, 2) / actual(1, 2);
EXPECT(assert_equal(expected, actual, 1e-4));
}
//*************************************************************************
/// Generate three cameras on a circle, looking in
std::array<Pose3, 3> generateCameraPoses() {
std::array<Pose3, 3> cameraPoses;
const double radius = 1.0;
for (int i = 0; i < 3; ++i) {
double angle = i * 2.0 * M_PI / 3.0;
double c = cos(angle), s = sin(angle);
Rot3 aRb({-s, c, 0}, {0, 0, -1}, {-c, -s, 0});
cameraPoses[i] = {aRb, Point3(radius * c, radius * s, 0)};
}
return cameraPoses;
}
//*************************************************************************
/// Function to generate a TripleF from camera poses
TripleF<SimpleFundamentalMatrix> generateTripleF(
const std::array<Pose3, 3>& cameraPoses) {
std::array<SimpleFundamentalMatrix, 3> F;
for (size_t i = 0; i < 3; ++i) {
size_t j = (i + 1) % 3;
const Pose3 iPj = cameraPoses[i].between(cameraPoses[j]);
EssentialMatrix E(iPj.rotation(), Unit3(iPj.translation()));
F[i] = {E, focalLength, focalLength, principalPoint, principalPoint};
}
return {F[0], F[1], F[2]}; // Return a TripleF instance
}
//*************************************************************************
TEST(TripleF, Transfer) {
// Generate cameras on a circle, as well as fundamental matrices
auto cameraPoses = generateCameraPoses();
auto triplet = generateTripleF(cameraPoses);
// Check that they are all equal
EXPECT(triplet.Fab.equals(triplet.Fbc, 1e-9));
EXPECT(triplet.Fbc.equals(triplet.Fca, 1e-9));
EXPECT(triplet.Fca.equals(triplet.Fab, 1e-9));
// Now project a point into the three cameras
const Point3 P(0.1, 0.2, 0.3);
const Cal3_S2 K(focalLength, focalLength, 0.0, //
principalPoint.x(), principalPoint.y());
std::array<Point2, 3> p;
for (size_t i = 0; i < 3; ++i) {
// Project the point into each camera
PinholeCameraCal3_S2 camera(cameraPoses[i], K);
p[i] = camera.project(P);
}
// Check that transfer works
EXPECT(assert_equal<Point2>(p[0], triplet.transferToA(p[1], p[2]), 1e-9));
EXPECT(assert_equal<Point2>(p[1], triplet.transferToB(p[0], p[2]), 1e-9));
EXPECT(assert_equal<Point2>(p[2], triplet.transferToC(p[0], p[1]), 1e-9));
}
//*************************************************************************
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
//*************************************************************************