Monte Carlo analysis

release/4.3a0
dellaert 2015-07-30 22:50:06 -07:00
parent 91eeede05a
commit 3cdf8973d4
1 changed files with 67 additions and 22 deletions

View File

@ -16,15 +16,16 @@
*/ */
#include <gtsam/navigation/ImuFactor.h> #include <gtsam/navigation/ImuFactor.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/nonlinear/factorTesting.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/navigation/ImuBias.h> #include <gtsam/navigation/ImuBias.h>
#include <gtsam/geometry/Pose3.h> #include <gtsam/geometry/Pose3.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/nonlinear/factorTesting.h>
#include <gtsam/linear/Sampler.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/base/TestableAssertions.h> #include <gtsam/base/TestableAssertions.h>
#include <gtsam/base/numericalDerivative.h> #include <gtsam/base/numericalDerivative.h>
#include <CppUnitLite/TestHarness.h>
#include <CppUnitLite/TestHarness.h>
#include <boost/bind.hpp> #include <boost/bind.hpp>
#include <list> #include <list>
@ -648,17 +649,17 @@ TEST(ImuFactor, JacobianPreintegratedCovariancePropagation) {
dgpv_dintNoise << I_3x3 * deltaT, Z_3x3; dgpv_dintNoise << I_3x3 * deltaT, Z_3x3;
// Compute jacobian wrt acc noise // Compute jacobian wrt acc noise
Matrix dgpv_daccNoise = numericalDerivative11<Vector, Vector3>( Matrix63 dgpv_daccNoise = numericalDerivative11<Vector6, Vector3>(
boost::bind(&updatePreintegratedPosVel, deltaPij_old, deltaVij_old, boost::bind(&updatePreintegratedPosVel, deltaPij_old, deltaVij_old,
deltaRij_old, _1, measuredOmega, deltaT), measuredAcc); deltaRij_old, _1, measuredOmega, deltaT), measuredAcc);
// Compute expected F wrt gyro noise // Compute expected F wrt gyro noise
Matrix dgpv_domegaNoise = numericalDerivative11<Vector, Vector3>( Matrix63 dgpv_domegaNoise = numericalDerivative11<Vector6, Vector3>(
boost::bind(&updatePreintegratedPosVel, deltaPij_old, deltaVij_old, boost::bind(&updatePreintegratedPosVel, deltaPij_old, deltaVij_old,
deltaRij_old, measuredAcc, _1, deltaT), measuredOmega); deltaRij_old, measuredAcc, _1, deltaT), measuredOmega);
// Compute expected f_rot wrt gyro noise // Compute expected f_rot wrt gyro noise
Matrix dgr_dangle = numericalDerivative11<Rot3, Vector3>( Matrix3 dgr_dangle = numericalDerivative11<Rot3, Vector3>(
boost::bind(&updatePreintegratedRot, deltaRij_old, _1, deltaT), boost::bind(&updatePreintegratedRot, deltaRij_old, _1, deltaT),
measuredOmega); measuredOmega);
@ -798,6 +799,40 @@ TEST(ImuFactor, JacobianPreintegratedCovariancePropagation_2ndOrderInt) {
EXPECT(assert_equal(newPreintCovarianceExpected, newPreintCovarianceActual)); EXPECT(assert_equal(newPreintCovarianceExpected, newPreintCovarianceActual));
} }
/* ************************************************************************* */
Matrix9 MonteCarlo(const PreintegratedImuMeasurements& pim,
const NavState& state, const imuBias::ConstantBias& bias, double dt,
const Pose3& body_P_sensor, const Vector3& measuredAcc,
const Vector3& measuredOmega, size_t N = 1000) {
// Get mean prediction from "ground truth" measurements
PreintegratedImuMeasurements pim1 = pim;
pim1.integrateMeasurement(measuredAcc, measuredOmega, dt, body_P_sensor);
NavState mean = pim1.predict(state, bias);
// Do a Monte Carlo analysis to determine empirical density on the predicted state
Sampler sampleAccelerationNoise(Vector3::Constant(sqrt(accNoiseVar)));
Sampler sampleOmegaNoise(Vector3::Constant(sqrt(omegaNoiseVar)));
Matrix samples(9, N);
Vector9 sum = Vector9::Zero();
for (size_t i = 0; i < N; i++) {
PreintegratedImuMeasurements pim2 = pim;
Vector3 perturbedAcc = measuredAcc + sampleAccelerationNoise.sample();
Vector3 perturbedOmega = measuredOmega + sampleOmegaNoise.sample();
pim2.integrateMeasurement(perturbedAcc, perturbedOmega, dt, body_P_sensor);
NavState prediction = pim2.predict(state, bias);
samples.col(i) = mean.localCoordinates(prediction);
sum += samples.col(i);
}
Vector9 sampleMean = sum / N;
Matrix9 Q;
Q.setZero();
for (size_t i = 0; i < N; i++) {
Vector9 xi = samples.col(i) - sampleMean;
Q += xi * xi.transpose() / (N - 1);
}
return Q;
}
/* ************************************************************************* */ /* ************************************************************************* */
TEST(ImuFactor, ErrorWithBiasesAndSensorBodyDisplacement) { TEST(ImuFactor, ErrorWithBiasesAndSensorBodyDisplacement) {
imuBias::ConstantBias bias(Vector3(0.2, 0, 0), Vector3(0, 0, 0.3)); // Biases (acc, rot) imuBias::ConstantBias bias(Vector3(0.2, 0, 0), Vector3(0, 0, 0.3)); // Biases (acc, rot)
@ -812,17 +847,18 @@ TEST(ImuFactor, ErrorWithBiasesAndSensorBodyDisplacement) {
measuredOmega << 0, 0, M_PI / 10.0 + 0.3; measuredOmega << 0, 0, M_PI / 10.0 + 0.3;
Vector3 measuredAcc = x1.rotation().unrotate(-kGravityAlongNavZDown) Vector3 measuredAcc = x1.rotation().unrotate(-kGravityAlongNavZDown)
+ Vector3(0.2, 0.0, 0.0); + Vector3(0.2, 0.0, 0.0);
double deltaT = 1.0; double dt = 1.0;
const Pose3 body_P_sensor(Rot3::Expmap(Vector3(0, 0.10, 0.10)), Pose3 body_P_sensor(Rot3::Expmap(Vector3(0, 0.1, 0.1)), Point3(1, 0, 0));
Point3(1, 0, 0)); imuBias::ConstantBias biasHat(Vector3(0.2, 0.0, 0.0), Vector3(0.0, 0.0, 0.0));
PreintegratedImuMeasurements pim( // Get mean prediction from "ground truth" measurements
imuBias::ConstantBias(Vector3(0.2, 0.0, 0.0), Vector3(0.0, 0.0, 0.0)), PreintegratedImuMeasurements pim(biasHat, kMeasuredAccCovariance,
kMeasuredAccCovariance, kMeasuredOmegaCovariance, kMeasuredOmegaCovariance, kIntegrationErrorCovariance, true);
kIntegrationErrorCovariance, true); Matrix9 Q = MonteCarlo(pim, NavState(x1, v1), biasHat, dt, body_P_sensor,
measuredAcc, measuredOmega, 1000);
cout << Q << endl;
pim.integrateMeasurement(measuredAcc, measuredOmega, deltaT, body_P_sensor);
Matrix expected(9,9); Matrix expected(9,9);
expected << expected <<
@ -835,6 +871,7 @@ TEST(ImuFactor, ErrorWithBiasesAndSensorBodyDisplacement) {
0.0, 0.0, 0.0, 0.005, 0.0, 0.0, 0.01, 0.0, 0.0, // 0.0, 0.0, 0.0, 0.005, 0.0, 0.0, 0.01, 0.0, 0.0, //
0.0, 0.0, 0.0, 0.0, 0.005, 0.0, 0.0, 0.01, 0.0, // 0.0, 0.0, 0.0, 0.0, 0.005, 0.0, 0.0, 0.01, 0.0, //
0.0, 0.0, 0.0, 0.0, 0.0, 0.005, 0.0, 0.0, 0.01; 0.0, 0.0, 0.0, 0.0, 0.0, 0.005, 0.0, 0.0, 0.01;
pim.integrateMeasurement(measuredAcc, measuredOmega, dt, body_P_sensor);
EXPECT(assert_equal(expected, pim.preintMeasCov(), 1e-6)); EXPECT(assert_equal(expected, pim.preintMeasCov(), 1e-6));
// Create factor // Create factor
@ -943,20 +980,28 @@ TEST(ImuFactor, PredictRotation) {
/* ************************************************************************* */ /* ************************************************************************* */
TEST(ImuFactor, PredictArbitrary) { TEST(ImuFactor, PredictArbitrary) {
imuBias::ConstantBias bias(Vector3(0, 0, 0), Vector3(0, 0, 0)); // Biases (acc, rot) imuBias::ConstantBias biasHat(Vector3(0.2, 0.0, 0.0), Vector3(0.0, 0.0, 0.0));
// Measurements // Measurements
Vector3 measuredOmega(M_PI / 10, M_PI / 10, M_PI / 10); Vector3 measuredOmega(M_PI / 10, M_PI / 10, M_PI / 10);
Vector3 measuredAcc(0.1, 0.2, -9.81); Vector3 measuredAcc(0.1, 0.2, -9.81);
double deltaT = 0.001; double dt = 0.001;
ImuFactor::PreintegratedMeasurements pim( ImuFactor::PreintegratedMeasurements pim(
imuBias::ConstantBias(Vector3(0.2, 0.0, 0.0), Vector3(0.0, 0.0, 0.0)), biasHat,
kMeasuredAccCovariance, kMeasuredOmegaCovariance, kMeasuredAccCovariance, kMeasuredOmegaCovariance,
kIntegrationErrorCovariance, true); kIntegrationErrorCovariance, true);
Pose3 x1;
Vector3 v1 = Vector3(0, 0, 0);
Matrix9 Q = MonteCarlo(pim, NavState(x1, v1), biasHat, dt, Pose3(),
measuredAcc, measuredOmega, 1000);
cout << Q << endl;
for (int i = 0; i < 1000; ++i) pim.integrateMeasurement(measuredAcc, measuredOmega, dt);
pim.integrateMeasurement(measuredAcc, measuredOmega, deltaT); cout << pim.preintMeasCov() << endl;
for (int i = 0; i < 999; ++i)
pim.integrateMeasurement(measuredAcc, measuredOmega, dt);
Matrix expected(9,9); Matrix expected(9,9);
expected << // expected << //
@ -976,9 +1021,9 @@ TEST(ImuFactor, PredictArbitrary) {
kZeroOmegaCoriolis); kZeroOmegaCoriolis);
// Predict // Predict
Pose3 x1, x2; Pose3 x2;
Vector3 v1 = Vector3(0, 0.0, 0.0);
Vector3 v2; Vector3 v2;
imuBias::ConstantBias bias(Vector3(0, 0, 0), Vector3(0, 0, 0));
ImuFactor::Predict(x1, v1, x2, v2, bias, pim, kGravityAlongNavZDown, ImuFactor::Predict(x1, v1, x2, v2, bias, pim, kGravityAlongNavZDown,
kZeroOmegaCoriolis); kZeroOmegaCoriolis);