update GaussianMixtureFactor to record normalizers, and add unit tests

release/4.3a0
Varun Agrawal 2024-08-20 07:51:00 -04:00
parent 2430abb4bc
commit 3c722acedc
3 changed files with 250 additions and 9 deletions

View File

@ -28,11 +28,86 @@
namespace gtsam {
/**
* @brief Helper function to correct the [A|b] matrices in the factor components
* with the normalizer values.
* This is done by storing the normalizer value in
* the `b` vector as an additional row.
*
* @param factors DecisionTree of GaussianFactor shared pointers.
* @param varyingNormalizers Flag indicating the normalizers are different for
* each component.
* @return GaussianMixtureFactor::Factors
*/
GaussianMixtureFactor::Factors correct(
const GaussianMixtureFactor::Factors &factors, bool varyingNormalizers) {
if (!varyingNormalizers) {
return factors;
}
// First compute all the sqrt(|2 pi Sigma|) terms
auto computeNormalizers = [](const GaussianMixtureFactor::sharedFactor &gf) {
auto jf = std::dynamic_pointer_cast<JacobianFactor>(gf);
// If we have, say, a Hessian factor, then no need to do anything
if (!jf) return 0.0;
auto model = jf->get_model();
// If there is no noise model, there is nothing to do.
if (!model) {
return 0.0;
}
// Since noise models are Gaussian, we can get the logDeterminant using the
// same trick as in GaussianConditional
double logDetR =
model->R().diagonal().unaryExpr([](double x) { return log(x); }).sum();
double logDeterminantSigma = -2.0 * logDetR;
size_t n = model->dim();
constexpr double log2pi = 1.8378770664093454835606594728112;
return n * log2pi + logDeterminantSigma;
};
AlgebraicDecisionTree<Key> log_normalizers =
DecisionTree<Key, double>(factors, computeNormalizers);
// Find the minimum value so we can "proselytize" to positive values.
// Done because we can't have sqrt of negative numbers.
double min_log_normalizer = log_normalizers.min();
log_normalizers = log_normalizers.apply(
[&min_log_normalizer](double n) { return n - min_log_normalizer; });
// Finally, update the [A|b] matrices.
auto update = [&log_normalizers](
const Assignment<Key> &assignment,
const GaussianMixtureFactor::sharedFactor &gf) {
auto jf = std::dynamic_pointer_cast<JacobianFactor>(gf);
if (!jf) return gf;
// If there is no noise model, there is nothing to do.
if (!jf->get_model()) return gf;
// If the log_normalizer is 0, do nothing
if (log_normalizers(assignment) == 0.0) return gf;
GaussianFactorGraph gfg;
gfg.push_back(jf);
Vector c(1);
c << std::sqrt(log_normalizers(assignment));
auto constantFactor = std::make_shared<JacobianFactor>(c);
gfg.push_back(constantFactor);
return std::dynamic_pointer_cast<GaussianFactor>(
std::make_shared<JacobianFactor>(gfg));
};
return factors.apply(update);
}
/* *******************************************************************************/
GaussianMixtureFactor::GaussianMixtureFactor(const KeyVector &continuousKeys,
const DiscreteKeys &discreteKeys,
const Factors &factors)
: Base(continuousKeys, discreteKeys), factors_(factors) {}
const Factors &factors,
bool varyingNormalizers)
: Base(continuousKeys, discreteKeys),
factors_(correct(factors, varyingNormalizers)) {}
/* *******************************************************************************/
bool GaussianMixtureFactor::equals(const HybridFactor &lf, double tol) const {

View File

@ -82,10 +82,13 @@ class GTSAM_EXPORT GaussianMixtureFactor : public HybridFactor {
* their cardinalities.
* @param factors The decision tree of Gaussian factors stored as the mixture
* density.
* @param varyingNormalizers Flag indicating factor components have varying
* normalizer values.
*/
GaussianMixtureFactor(const KeyVector &continuousKeys,
const DiscreteKeys &discreteKeys,
const Factors &factors);
const Factors &factors,
bool varyingNormalizers = false);
/**
* @brief Construct a new GaussianMixtureFactor object using a vector of
@ -94,12 +97,16 @@ class GTSAM_EXPORT GaussianMixtureFactor : public HybridFactor {
* @param continuousKeys Vector of keys for continuous factors.
* @param discreteKeys Vector of discrete keys.
* @param factors Vector of gaussian factor shared pointers.
* @param varyingNormalizers Flag indicating factor components have varying
* normalizer values.
*/
GaussianMixtureFactor(const KeyVector &continuousKeys,
const DiscreteKeys &discreteKeys,
const std::vector<sharedFactor> &factors)
const std::vector<sharedFactor> &factors,
bool varyingNormalizers = false)
: GaussianMixtureFactor(continuousKeys, discreteKeys,
Factors(discreteKeys, factors)) {}
Factors(discreteKeys, factors),
varyingNormalizers) {}
/// @}
/// @name Testable

View File

@ -22,9 +22,13 @@
#include <gtsam/discrete/DiscreteValues.h>
#include <gtsam/hybrid/GaussianMixture.h>
#include <gtsam/hybrid/GaussianMixtureFactor.h>
#include <gtsam/hybrid/HybridBayesNet.h>
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
#include <gtsam/hybrid/HybridValues.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/nonlinear/PriorFactor.h>
#include <gtsam/slam/BetweenFactor.h>
// Include for test suite
#include <CppUnitLite/TestHarness.h>
@ -56,7 +60,6 @@ TEST(GaussianMixtureFactor, Sum) {
auto b = Matrix::Zero(2, 1);
Vector2 sigmas;
sigmas << 1, 2;
auto model = noiseModel::Diagonal::Sigmas(sigmas, true);
auto f10 = std::make_shared<JacobianFactor>(X(1), A1, X(2), A2, b);
auto f11 = std::make_shared<JacobianFactor>(X(1), A1, X(2), A2, b);
@ -179,7 +182,8 @@ TEST(GaussianMixtureFactor, Error) {
continuousValues.insert(X(2), Vector2(1, 1));
// error should return a tree of errors, with nodes for each discrete value.
AlgebraicDecisionTree<Key> error_tree = mixtureFactor.errorTree(continuousValues);
AlgebraicDecisionTree<Key> error_tree =
mixtureFactor.errorTree(continuousValues);
std::vector<DiscreteKey> discrete_keys = {m1};
// Error values for regression test
@ -192,8 +196,163 @@ TEST(GaussianMixtureFactor, Error) {
DiscreteValues discreteValues;
discreteValues[m1.first] = 1;
EXPECT_DOUBLES_EQUAL(
4.0, mixtureFactor.error({continuousValues, discreteValues}),
1e-9);
4.0, mixtureFactor.error({continuousValues, discreteValues}), 1e-9);
}
/* ************************************************************************* */
// Test components with differing means
TEST(GaussianMixtureFactor, DifferentMeans) {
DiscreteKey m1(M(1), 2), m2(M(2), 2);
Values values;
double x1 = 0.0, x2 = 1.75, x3 = 2.60;
values.insert(X(1), x1);
values.insert(X(2), x2);
values.insert(X(3), x3);
auto model0 = noiseModel::Isotropic::Sigma(1, 1e-0);
auto model1 = noiseModel::Isotropic::Sigma(1, 1e-0);
auto prior_noise = noiseModel::Isotropic::Sigma(1, 1e-0);
auto f0 = std::make_shared<BetweenFactor<double>>(X(1), X(2), 0.0, model0)
->linearize(values);
auto f1 = std::make_shared<BetweenFactor<double>>(X(1), X(2), 2.0, model1)
->linearize(values);
std::vector<GaussianFactor::shared_ptr> factors{f0, f1};
GaussianMixtureFactor mixtureFactor({X(1), X(2)}, {m1}, factors, true);
HybridGaussianFactorGraph hfg;
hfg.push_back(mixtureFactor);
f0 = std::make_shared<BetweenFactor<double>>(X(2), X(3), 0.0, model0)
->linearize(values);
f1 = std::make_shared<BetweenFactor<double>>(X(2), X(3), 2.0, model1)
->linearize(values);
std::vector<GaussianFactor::shared_ptr> factors23{f0, f1};
hfg.push_back(GaussianMixtureFactor({X(2), X(3)}, {m2}, factors23, true));
auto prior = PriorFactor<double>(X(1), x1, prior_noise).linearize(values);
hfg.push_back(prior);
hfg.push_back(PriorFactor<double>(X(2), 2.0, prior_noise).linearize(values));
auto bn = hfg.eliminateSequential();
HybridValues actual = bn->optimize();
HybridValues expected(
VectorValues{
{X(1), Vector1(0.0)}, {X(2), Vector1(0.25)}, {X(3), Vector1(-0.6)}},
DiscreteValues{{M(1), 1}, {M(2), 0}});
EXPECT(assert_equal(expected, actual));
{
DiscreteValues dv{{M(1), 0}, {M(2), 0}};
VectorValues cont = bn->optimize(dv);
double error = bn->error(HybridValues(cont, dv));
// regression
EXPECT_DOUBLES_EQUAL(1.77418393408, error, 1e-9);
}
{
DiscreteValues dv{{M(1), 0}, {M(2), 1}};
VectorValues cont = bn->optimize(dv);
double error = bn->error(HybridValues(cont, dv));
// regression
EXPECT_DOUBLES_EQUAL(1.77418393408, error, 1e-9);
}
{
DiscreteValues dv{{M(1), 1}, {M(2), 0}};
VectorValues cont = bn->optimize(dv);
double error = bn->error(HybridValues(cont, dv));
// regression
EXPECT_DOUBLES_EQUAL(1.10751726741, error, 1e-9);
}
{
DiscreteValues dv{{M(1), 1}, {M(2), 1}};
VectorValues cont = bn->optimize(dv);
double error = bn->error(HybridValues(cont, dv));
// regression
EXPECT_DOUBLES_EQUAL(1.10751726741, error, 1e-9);
}
}
/* ************************************************************************* */
/**
* @brief Test components with differing covariances.
* The factor graph is
* *-X1-*-X2
* |
* M1
*/
TEST(GaussianMixtureFactor, DifferentCovariances) {
DiscreteKey m1(M(1), 2);
Values values;
double x1 = 1.0, x2 = 1.0;
values.insert(X(1), x1);
values.insert(X(2), x2);
double between = 0.0;
auto model0 = noiseModel::Isotropic::Sigma(1, 1e2);
auto model1 = noiseModel::Isotropic::Sigma(1, 1e-2);
auto prior_noise = noiseModel::Isotropic::Sigma(1, 1e-3);
auto f0 =
std::make_shared<BetweenFactor<double>>(X(1), X(2), between, model0);
auto f1 =
std::make_shared<BetweenFactor<double>>(X(1), X(2), between, model1);
std::vector<NonlinearFactor::shared_ptr> factors{f0, f1};
// Create via toFactorGraph
using symbol_shorthand::Z;
Matrix H0_1, H0_2, H1_1, H1_2;
Vector d0 = f0->evaluateError(x1, x2, &H0_1, &H0_2);
std::vector<std::pair<Key, Matrix>> terms0 = {{Z(1), gtsam::I_1x1 /*Rx*/},
//
{X(1), H0_1 /*Sp1*/},
{X(2), H0_2 /*Tp2*/}};
Vector d1 = f1->evaluateError(x1, x2, &H1_1, &H1_2);
std::vector<std::pair<Key, Matrix>> terms1 = {{Z(1), gtsam::I_1x1 /*Rx*/},
//
{X(1), H1_1 /*Sp1*/},
{X(2), H1_2 /*Tp2*/}};
gtsam::GaussianMixtureFactor gmf(
{X(1), X(2)}, {m1},
{std::make_shared<JacobianFactor>(X(1), H0_1, X(2), H0_2, -d0, model0),
std::make_shared<JacobianFactor>(X(1), H1_1, X(2), H1_2, -d1, model1)},
true);
// Create FG with single GaussianMixtureFactor
HybridGaussianFactorGraph mixture_fg;
mixture_fg.add(gmf);
// Linearized prior factor on X1
auto prior = PriorFactor<double>(X(1), x1, prior_noise).linearize(values);
mixture_fg.push_back(prior);
auto hbn = mixture_fg.eliminateSequential();
// hbn->print();
VectorValues cv;
cv.insert(X(1), Vector1(0.0));
cv.insert(X(2), Vector1(0.0));
// Check that the error values at the MLE point μ.
AlgebraicDecisionTree<Key> errorTree = hbn->errorTree(cv);
DiscreteValues dv0{{M(1), 0}};
DiscreteValues dv1{{M(1), 1}};
// regression
EXPECT_DOUBLES_EQUAL(0.69314718056, errorTree(dv0), 1e-9);
EXPECT_DOUBLES_EQUAL(0.69314718056, errorTree(dv1), 1e-9);
DiscreteConditional expected_m1(m1, "0.5/0.5");
DiscreteConditional actual_m1 = *(hbn->at(2)->asDiscrete());
EXPECT(assert_equal(expected_m1, actual_m1));
}
/* ************************************************************************* */