update GaussianMixtureFactor to record normalizers, and add unit tests
parent
2430abb4bc
commit
3c722acedc
|
|
@ -28,11 +28,86 @@
|
||||||
|
|
||||||
namespace gtsam {
|
namespace gtsam {
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Helper function to correct the [A|b] matrices in the factor components
|
||||||
|
* with the normalizer values.
|
||||||
|
* This is done by storing the normalizer value in
|
||||||
|
* the `b` vector as an additional row.
|
||||||
|
*
|
||||||
|
* @param factors DecisionTree of GaussianFactor shared pointers.
|
||||||
|
* @param varyingNormalizers Flag indicating the normalizers are different for
|
||||||
|
* each component.
|
||||||
|
* @return GaussianMixtureFactor::Factors
|
||||||
|
*/
|
||||||
|
GaussianMixtureFactor::Factors correct(
|
||||||
|
const GaussianMixtureFactor::Factors &factors, bool varyingNormalizers) {
|
||||||
|
if (!varyingNormalizers) {
|
||||||
|
return factors;
|
||||||
|
}
|
||||||
|
|
||||||
|
// First compute all the sqrt(|2 pi Sigma|) terms
|
||||||
|
auto computeNormalizers = [](const GaussianMixtureFactor::sharedFactor &gf) {
|
||||||
|
auto jf = std::dynamic_pointer_cast<JacobianFactor>(gf);
|
||||||
|
// If we have, say, a Hessian factor, then no need to do anything
|
||||||
|
if (!jf) return 0.0;
|
||||||
|
|
||||||
|
auto model = jf->get_model();
|
||||||
|
// If there is no noise model, there is nothing to do.
|
||||||
|
if (!model) {
|
||||||
|
return 0.0;
|
||||||
|
}
|
||||||
|
// Since noise models are Gaussian, we can get the logDeterminant using the
|
||||||
|
// same trick as in GaussianConditional
|
||||||
|
double logDetR =
|
||||||
|
model->R().diagonal().unaryExpr([](double x) { return log(x); }).sum();
|
||||||
|
double logDeterminantSigma = -2.0 * logDetR;
|
||||||
|
|
||||||
|
size_t n = model->dim();
|
||||||
|
constexpr double log2pi = 1.8378770664093454835606594728112;
|
||||||
|
return n * log2pi + logDeterminantSigma;
|
||||||
|
};
|
||||||
|
|
||||||
|
AlgebraicDecisionTree<Key> log_normalizers =
|
||||||
|
DecisionTree<Key, double>(factors, computeNormalizers);
|
||||||
|
|
||||||
|
// Find the minimum value so we can "proselytize" to positive values.
|
||||||
|
// Done because we can't have sqrt of negative numbers.
|
||||||
|
double min_log_normalizer = log_normalizers.min();
|
||||||
|
log_normalizers = log_normalizers.apply(
|
||||||
|
[&min_log_normalizer](double n) { return n - min_log_normalizer; });
|
||||||
|
|
||||||
|
// Finally, update the [A|b] matrices.
|
||||||
|
auto update = [&log_normalizers](
|
||||||
|
const Assignment<Key> &assignment,
|
||||||
|
const GaussianMixtureFactor::sharedFactor &gf) {
|
||||||
|
auto jf = std::dynamic_pointer_cast<JacobianFactor>(gf);
|
||||||
|
if (!jf) return gf;
|
||||||
|
// If there is no noise model, there is nothing to do.
|
||||||
|
if (!jf->get_model()) return gf;
|
||||||
|
// If the log_normalizer is 0, do nothing
|
||||||
|
if (log_normalizers(assignment) == 0.0) return gf;
|
||||||
|
|
||||||
|
GaussianFactorGraph gfg;
|
||||||
|
gfg.push_back(jf);
|
||||||
|
|
||||||
|
Vector c(1);
|
||||||
|
c << std::sqrt(log_normalizers(assignment));
|
||||||
|
auto constantFactor = std::make_shared<JacobianFactor>(c);
|
||||||
|
|
||||||
|
gfg.push_back(constantFactor);
|
||||||
|
return std::dynamic_pointer_cast<GaussianFactor>(
|
||||||
|
std::make_shared<JacobianFactor>(gfg));
|
||||||
|
};
|
||||||
|
return factors.apply(update);
|
||||||
|
}
|
||||||
|
|
||||||
/* *******************************************************************************/
|
/* *******************************************************************************/
|
||||||
GaussianMixtureFactor::GaussianMixtureFactor(const KeyVector &continuousKeys,
|
GaussianMixtureFactor::GaussianMixtureFactor(const KeyVector &continuousKeys,
|
||||||
const DiscreteKeys &discreteKeys,
|
const DiscreteKeys &discreteKeys,
|
||||||
const Factors &factors)
|
const Factors &factors,
|
||||||
: Base(continuousKeys, discreteKeys), factors_(factors) {}
|
bool varyingNormalizers)
|
||||||
|
: Base(continuousKeys, discreteKeys),
|
||||||
|
factors_(correct(factors, varyingNormalizers)) {}
|
||||||
|
|
||||||
/* *******************************************************************************/
|
/* *******************************************************************************/
|
||||||
bool GaussianMixtureFactor::equals(const HybridFactor &lf, double tol) const {
|
bool GaussianMixtureFactor::equals(const HybridFactor &lf, double tol) const {
|
||||||
|
|
|
||||||
|
|
@ -82,10 +82,13 @@ class GTSAM_EXPORT GaussianMixtureFactor : public HybridFactor {
|
||||||
* their cardinalities.
|
* their cardinalities.
|
||||||
* @param factors The decision tree of Gaussian factors stored as the mixture
|
* @param factors The decision tree of Gaussian factors stored as the mixture
|
||||||
* density.
|
* density.
|
||||||
|
* @param varyingNormalizers Flag indicating factor components have varying
|
||||||
|
* normalizer values.
|
||||||
*/
|
*/
|
||||||
GaussianMixtureFactor(const KeyVector &continuousKeys,
|
GaussianMixtureFactor(const KeyVector &continuousKeys,
|
||||||
const DiscreteKeys &discreteKeys,
|
const DiscreteKeys &discreteKeys,
|
||||||
const Factors &factors);
|
const Factors &factors,
|
||||||
|
bool varyingNormalizers = false);
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief Construct a new GaussianMixtureFactor object using a vector of
|
* @brief Construct a new GaussianMixtureFactor object using a vector of
|
||||||
|
|
@ -94,12 +97,16 @@ class GTSAM_EXPORT GaussianMixtureFactor : public HybridFactor {
|
||||||
* @param continuousKeys Vector of keys for continuous factors.
|
* @param continuousKeys Vector of keys for continuous factors.
|
||||||
* @param discreteKeys Vector of discrete keys.
|
* @param discreteKeys Vector of discrete keys.
|
||||||
* @param factors Vector of gaussian factor shared pointers.
|
* @param factors Vector of gaussian factor shared pointers.
|
||||||
|
* @param varyingNormalizers Flag indicating factor components have varying
|
||||||
|
* normalizer values.
|
||||||
*/
|
*/
|
||||||
GaussianMixtureFactor(const KeyVector &continuousKeys,
|
GaussianMixtureFactor(const KeyVector &continuousKeys,
|
||||||
const DiscreteKeys &discreteKeys,
|
const DiscreteKeys &discreteKeys,
|
||||||
const std::vector<sharedFactor> &factors)
|
const std::vector<sharedFactor> &factors,
|
||||||
|
bool varyingNormalizers = false)
|
||||||
: GaussianMixtureFactor(continuousKeys, discreteKeys,
|
: GaussianMixtureFactor(continuousKeys, discreteKeys,
|
||||||
Factors(discreteKeys, factors)) {}
|
Factors(discreteKeys, factors),
|
||||||
|
varyingNormalizers) {}
|
||||||
|
|
||||||
/// @}
|
/// @}
|
||||||
/// @name Testable
|
/// @name Testable
|
||||||
|
|
|
||||||
|
|
@ -22,9 +22,13 @@
|
||||||
#include <gtsam/discrete/DiscreteValues.h>
|
#include <gtsam/discrete/DiscreteValues.h>
|
||||||
#include <gtsam/hybrid/GaussianMixture.h>
|
#include <gtsam/hybrid/GaussianMixture.h>
|
||||||
#include <gtsam/hybrid/GaussianMixtureFactor.h>
|
#include <gtsam/hybrid/GaussianMixtureFactor.h>
|
||||||
|
#include <gtsam/hybrid/HybridBayesNet.h>
|
||||||
|
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
|
||||||
#include <gtsam/hybrid/HybridValues.h>
|
#include <gtsam/hybrid/HybridValues.h>
|
||||||
#include <gtsam/inference/Symbol.h>
|
#include <gtsam/inference/Symbol.h>
|
||||||
#include <gtsam/linear/GaussianFactorGraph.h>
|
#include <gtsam/linear/GaussianFactorGraph.h>
|
||||||
|
#include <gtsam/nonlinear/PriorFactor.h>
|
||||||
|
#include <gtsam/slam/BetweenFactor.h>
|
||||||
|
|
||||||
// Include for test suite
|
// Include for test suite
|
||||||
#include <CppUnitLite/TestHarness.h>
|
#include <CppUnitLite/TestHarness.h>
|
||||||
|
|
@ -56,7 +60,6 @@ TEST(GaussianMixtureFactor, Sum) {
|
||||||
auto b = Matrix::Zero(2, 1);
|
auto b = Matrix::Zero(2, 1);
|
||||||
Vector2 sigmas;
|
Vector2 sigmas;
|
||||||
sigmas << 1, 2;
|
sigmas << 1, 2;
|
||||||
auto model = noiseModel::Diagonal::Sigmas(sigmas, true);
|
|
||||||
|
|
||||||
auto f10 = std::make_shared<JacobianFactor>(X(1), A1, X(2), A2, b);
|
auto f10 = std::make_shared<JacobianFactor>(X(1), A1, X(2), A2, b);
|
||||||
auto f11 = std::make_shared<JacobianFactor>(X(1), A1, X(2), A2, b);
|
auto f11 = std::make_shared<JacobianFactor>(X(1), A1, X(2), A2, b);
|
||||||
|
|
@ -179,7 +182,8 @@ TEST(GaussianMixtureFactor, Error) {
|
||||||
continuousValues.insert(X(2), Vector2(1, 1));
|
continuousValues.insert(X(2), Vector2(1, 1));
|
||||||
|
|
||||||
// error should return a tree of errors, with nodes for each discrete value.
|
// error should return a tree of errors, with nodes for each discrete value.
|
||||||
AlgebraicDecisionTree<Key> error_tree = mixtureFactor.errorTree(continuousValues);
|
AlgebraicDecisionTree<Key> error_tree =
|
||||||
|
mixtureFactor.errorTree(continuousValues);
|
||||||
|
|
||||||
std::vector<DiscreteKey> discrete_keys = {m1};
|
std::vector<DiscreteKey> discrete_keys = {m1};
|
||||||
// Error values for regression test
|
// Error values for regression test
|
||||||
|
|
@ -192,8 +196,163 @@ TEST(GaussianMixtureFactor, Error) {
|
||||||
DiscreteValues discreteValues;
|
DiscreteValues discreteValues;
|
||||||
discreteValues[m1.first] = 1;
|
discreteValues[m1.first] = 1;
|
||||||
EXPECT_DOUBLES_EQUAL(
|
EXPECT_DOUBLES_EQUAL(
|
||||||
4.0, mixtureFactor.error({continuousValues, discreteValues}),
|
4.0, mixtureFactor.error({continuousValues, discreteValues}), 1e-9);
|
||||||
1e-9);
|
}
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
// Test components with differing means
|
||||||
|
TEST(GaussianMixtureFactor, DifferentMeans) {
|
||||||
|
DiscreteKey m1(M(1), 2), m2(M(2), 2);
|
||||||
|
|
||||||
|
Values values;
|
||||||
|
double x1 = 0.0, x2 = 1.75, x3 = 2.60;
|
||||||
|
values.insert(X(1), x1);
|
||||||
|
values.insert(X(2), x2);
|
||||||
|
values.insert(X(3), x3);
|
||||||
|
|
||||||
|
auto model0 = noiseModel::Isotropic::Sigma(1, 1e-0);
|
||||||
|
auto model1 = noiseModel::Isotropic::Sigma(1, 1e-0);
|
||||||
|
auto prior_noise = noiseModel::Isotropic::Sigma(1, 1e-0);
|
||||||
|
|
||||||
|
auto f0 = std::make_shared<BetweenFactor<double>>(X(1), X(2), 0.0, model0)
|
||||||
|
->linearize(values);
|
||||||
|
auto f1 = std::make_shared<BetweenFactor<double>>(X(1), X(2), 2.0, model1)
|
||||||
|
->linearize(values);
|
||||||
|
std::vector<GaussianFactor::shared_ptr> factors{f0, f1};
|
||||||
|
|
||||||
|
GaussianMixtureFactor mixtureFactor({X(1), X(2)}, {m1}, factors, true);
|
||||||
|
HybridGaussianFactorGraph hfg;
|
||||||
|
hfg.push_back(mixtureFactor);
|
||||||
|
|
||||||
|
f0 = std::make_shared<BetweenFactor<double>>(X(2), X(3), 0.0, model0)
|
||||||
|
->linearize(values);
|
||||||
|
f1 = std::make_shared<BetweenFactor<double>>(X(2), X(3), 2.0, model1)
|
||||||
|
->linearize(values);
|
||||||
|
std::vector<GaussianFactor::shared_ptr> factors23{f0, f1};
|
||||||
|
hfg.push_back(GaussianMixtureFactor({X(2), X(3)}, {m2}, factors23, true));
|
||||||
|
|
||||||
|
auto prior = PriorFactor<double>(X(1), x1, prior_noise).linearize(values);
|
||||||
|
hfg.push_back(prior);
|
||||||
|
|
||||||
|
hfg.push_back(PriorFactor<double>(X(2), 2.0, prior_noise).linearize(values));
|
||||||
|
|
||||||
|
auto bn = hfg.eliminateSequential();
|
||||||
|
HybridValues actual = bn->optimize();
|
||||||
|
|
||||||
|
HybridValues expected(
|
||||||
|
VectorValues{
|
||||||
|
{X(1), Vector1(0.0)}, {X(2), Vector1(0.25)}, {X(3), Vector1(-0.6)}},
|
||||||
|
DiscreteValues{{M(1), 1}, {M(2), 0}});
|
||||||
|
|
||||||
|
EXPECT(assert_equal(expected, actual));
|
||||||
|
|
||||||
|
{
|
||||||
|
DiscreteValues dv{{M(1), 0}, {M(2), 0}};
|
||||||
|
VectorValues cont = bn->optimize(dv);
|
||||||
|
double error = bn->error(HybridValues(cont, dv));
|
||||||
|
// regression
|
||||||
|
EXPECT_DOUBLES_EQUAL(1.77418393408, error, 1e-9);
|
||||||
|
}
|
||||||
|
{
|
||||||
|
DiscreteValues dv{{M(1), 0}, {M(2), 1}};
|
||||||
|
VectorValues cont = bn->optimize(dv);
|
||||||
|
double error = bn->error(HybridValues(cont, dv));
|
||||||
|
// regression
|
||||||
|
EXPECT_DOUBLES_EQUAL(1.77418393408, error, 1e-9);
|
||||||
|
}
|
||||||
|
{
|
||||||
|
DiscreteValues dv{{M(1), 1}, {M(2), 0}};
|
||||||
|
VectorValues cont = bn->optimize(dv);
|
||||||
|
double error = bn->error(HybridValues(cont, dv));
|
||||||
|
// regression
|
||||||
|
EXPECT_DOUBLES_EQUAL(1.10751726741, error, 1e-9);
|
||||||
|
}
|
||||||
|
{
|
||||||
|
DiscreteValues dv{{M(1), 1}, {M(2), 1}};
|
||||||
|
VectorValues cont = bn->optimize(dv);
|
||||||
|
double error = bn->error(HybridValues(cont, dv));
|
||||||
|
// regression
|
||||||
|
EXPECT_DOUBLES_EQUAL(1.10751726741, error, 1e-9);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
/**
|
||||||
|
* @brief Test components with differing covariances.
|
||||||
|
* The factor graph is
|
||||||
|
* *-X1-*-X2
|
||||||
|
* |
|
||||||
|
* M1
|
||||||
|
*/
|
||||||
|
TEST(GaussianMixtureFactor, DifferentCovariances) {
|
||||||
|
DiscreteKey m1(M(1), 2);
|
||||||
|
|
||||||
|
Values values;
|
||||||
|
double x1 = 1.0, x2 = 1.0;
|
||||||
|
values.insert(X(1), x1);
|
||||||
|
values.insert(X(2), x2);
|
||||||
|
|
||||||
|
double between = 0.0;
|
||||||
|
|
||||||
|
auto model0 = noiseModel::Isotropic::Sigma(1, 1e2);
|
||||||
|
auto model1 = noiseModel::Isotropic::Sigma(1, 1e-2);
|
||||||
|
auto prior_noise = noiseModel::Isotropic::Sigma(1, 1e-3);
|
||||||
|
|
||||||
|
auto f0 =
|
||||||
|
std::make_shared<BetweenFactor<double>>(X(1), X(2), between, model0);
|
||||||
|
auto f1 =
|
||||||
|
std::make_shared<BetweenFactor<double>>(X(1), X(2), between, model1);
|
||||||
|
std::vector<NonlinearFactor::shared_ptr> factors{f0, f1};
|
||||||
|
|
||||||
|
// Create via toFactorGraph
|
||||||
|
using symbol_shorthand::Z;
|
||||||
|
Matrix H0_1, H0_2, H1_1, H1_2;
|
||||||
|
Vector d0 = f0->evaluateError(x1, x2, &H0_1, &H0_2);
|
||||||
|
std::vector<std::pair<Key, Matrix>> terms0 = {{Z(1), gtsam::I_1x1 /*Rx*/},
|
||||||
|
//
|
||||||
|
{X(1), H0_1 /*Sp1*/},
|
||||||
|
{X(2), H0_2 /*Tp2*/}};
|
||||||
|
|
||||||
|
Vector d1 = f1->evaluateError(x1, x2, &H1_1, &H1_2);
|
||||||
|
std::vector<std::pair<Key, Matrix>> terms1 = {{Z(1), gtsam::I_1x1 /*Rx*/},
|
||||||
|
//
|
||||||
|
{X(1), H1_1 /*Sp1*/},
|
||||||
|
{X(2), H1_2 /*Tp2*/}};
|
||||||
|
gtsam::GaussianMixtureFactor gmf(
|
||||||
|
{X(1), X(2)}, {m1},
|
||||||
|
{std::make_shared<JacobianFactor>(X(1), H0_1, X(2), H0_2, -d0, model0),
|
||||||
|
std::make_shared<JacobianFactor>(X(1), H1_1, X(2), H1_2, -d1, model1)},
|
||||||
|
true);
|
||||||
|
|
||||||
|
// Create FG with single GaussianMixtureFactor
|
||||||
|
HybridGaussianFactorGraph mixture_fg;
|
||||||
|
mixture_fg.add(gmf);
|
||||||
|
|
||||||
|
// Linearized prior factor on X1
|
||||||
|
auto prior = PriorFactor<double>(X(1), x1, prior_noise).linearize(values);
|
||||||
|
mixture_fg.push_back(prior);
|
||||||
|
|
||||||
|
auto hbn = mixture_fg.eliminateSequential();
|
||||||
|
// hbn->print();
|
||||||
|
|
||||||
|
VectorValues cv;
|
||||||
|
cv.insert(X(1), Vector1(0.0));
|
||||||
|
cv.insert(X(2), Vector1(0.0));
|
||||||
|
|
||||||
|
// Check that the error values at the MLE point μ.
|
||||||
|
AlgebraicDecisionTree<Key> errorTree = hbn->errorTree(cv);
|
||||||
|
|
||||||
|
DiscreteValues dv0{{M(1), 0}};
|
||||||
|
DiscreteValues dv1{{M(1), 1}};
|
||||||
|
|
||||||
|
// regression
|
||||||
|
EXPECT_DOUBLES_EQUAL(0.69314718056, errorTree(dv0), 1e-9);
|
||||||
|
EXPECT_DOUBLES_EQUAL(0.69314718056, errorTree(dv1), 1e-9);
|
||||||
|
|
||||||
|
DiscreteConditional expected_m1(m1, "0.5/0.5");
|
||||||
|
DiscreteConditional actual_m1 = *(hbn->at(2)->asDiscrete());
|
||||||
|
|
||||||
|
EXPECT(assert_equal(expected_m1, actual_m1));
|
||||||
}
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue