Merge branch 'cg-methods' into rosenbrock
commit
3c2ddc82b4
|
@ -28,46 +28,6 @@ namespace gtsam {
|
|||
|
||||
typedef internal::NonlinearOptimizerState State;
|
||||
|
||||
/* ************************************************************************* */
|
||||
double FletcherReeves(const VectorValues& currentGradient,
|
||||
const VectorValues& prevGradient) {
|
||||
// Fletcher-Reeves: beta = g_n'*g_n/g_n-1'*g_n-1
|
||||
const double beta = std::max(0.0, currentGradient.dot(currentGradient) /
|
||||
prevGradient.dot(prevGradient));
|
||||
return beta;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
double PolakRibiere(const VectorValues& currentGradient,
|
||||
const VectorValues& prevGradient) {
|
||||
// Polak-Ribiere: beta = g_n'*(g_n-g_n-1)/g_n-1'*g_n-1
|
||||
const double beta =
|
||||
std::max(0.0, currentGradient.dot(currentGradient - prevGradient) /
|
||||
prevGradient.dot(prevGradient));
|
||||
return beta;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
double HestenesStiefel(const VectorValues& currentGradient,
|
||||
const VectorValues& prevGradient,
|
||||
const VectorValues& direction) {
|
||||
// Hestenes-Stiefel: beta = g_n'*(g_n-g_n-1)/(-s_n-1')*(g_n-g_n-1)
|
||||
VectorValues d = currentGradient - prevGradient;
|
||||
const double beta = std::max(0.0, currentGradient.dot(d) / -direction.dot(d));
|
||||
return beta;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
double DaiYuan(const VectorValues& currentGradient,
|
||||
const VectorValues& prevGradient,
|
||||
const VectorValues& direction) {
|
||||
// Dai-Yuan: beta = g_n'*g_n/(-s_n-1')*(g_n-g_n-1)
|
||||
const double beta =
|
||||
std::max(0.0, currentGradient.dot(currentGradient) /
|
||||
-direction.dot(currentGradient - prevGradient));
|
||||
return beta;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return the gradient vector of a nonlinear factor graph
|
||||
* @param nfg the graph
|
||||
|
|
|
@ -24,22 +24,48 @@
|
|||
namespace gtsam {
|
||||
|
||||
/// Fletcher-Reeves formula for computing β, the direction of steepest descent.
|
||||
double FletcherReeves(const VectorValues ¤tGradient,
|
||||
const VectorValues &prevGradient);
|
||||
template <typename Gradient>
|
||||
double FletcherReeves(const Gradient ¤tGradient,
|
||||
const Gradient &prevGradient) {
|
||||
// Fletcher-Reeves: beta = g_n'*g_n/g_n-1'*g_n-1
|
||||
const double beta =
|
||||
currentGradient.dot(currentGradient) / prevGradient.dot(prevGradient);
|
||||
return beta;
|
||||
}
|
||||
|
||||
/// Polak-Ribiere formula for computing β, the direction of steepest descent.
|
||||
double PolakRibiere(const VectorValues ¤tGradient,
|
||||
const VectorValues &prevGradient);
|
||||
template <typename Gradient>
|
||||
double PolakRibiere(const Gradient ¤tGradient,
|
||||
const Gradient &prevGradient) {
|
||||
// Polak-Ribiere: beta = g_n'*(g_n-g_n-1)/g_n-1'*g_n-1
|
||||
const double beta =
|
||||
std::max(0.0, currentGradient.dot(currentGradient - prevGradient) /
|
||||
prevGradient.dot(prevGradient));
|
||||
return beta;
|
||||
}
|
||||
|
||||
/// The Hestenes-Stiefel formula for computing β,
|
||||
/// the direction of steepest descent.
|
||||
double HestenesStiefel(const VectorValues ¤tGradient,
|
||||
const VectorValues &prevGradient,
|
||||
const VectorValues &direction);
|
||||
template <typename Gradient>
|
||||
double HestenesStiefel(const Gradient ¤tGradient,
|
||||
const Gradient &prevGradient,
|
||||
const Gradient &direction) {
|
||||
// Hestenes-Stiefel: beta = g_n'*(g_n-g_n-1)/(-s_n-1')*(g_n-g_n-1)
|
||||
VectorValues d = currentGradient - prevGradient;
|
||||
const double beta = std::max(0.0, currentGradient.dot(d) / -direction.dot(d));
|
||||
return beta;
|
||||
}
|
||||
|
||||
/// The Dai-Yuan formula for computing β, the direction of steepest descent.
|
||||
double DaiYuan(const VectorValues ¤tGradient,
|
||||
const VectorValues &prevGradient, const VectorValues &direction);
|
||||
template <typename Gradient>
|
||||
double DaiYuan(const Gradient ¤tGradient, const Gradient &prevGradient,
|
||||
const VectorValues &direction) {
|
||||
// Dai-Yuan: beta = g_n'*g_n/(-s_n-1')*(g_n-g_n-1)
|
||||
const double beta =
|
||||
std::max(0.0, currentGradient.dot(currentGradient) /
|
||||
-direction.dot(currentGradient - prevGradient));
|
||||
return beta;
|
||||
}
|
||||
|
||||
enum class DirectionMethod {
|
||||
FletcherReeves,
|
||||
|
|
|
@ -239,6 +239,49 @@ TEST(NonlinearConjugateGradientOptimizer, Optimization) {
|
|||
EXPECT(assert_equal(expected, result, 1e-1));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/// Test different direction methods
|
||||
TEST(NonlinearConjugateGradientOptimizer, DirectionMethods) {
|
||||
const auto [graph, initialEstimate] = generateProblem();
|
||||
|
||||
NonlinearOptimizerParams param;
|
||||
param.maxIterations =
|
||||
500; /* requires a larger number of iterations to converge */
|
||||
param.verbosity = NonlinearOptimizerParams::SILENT;
|
||||
|
||||
// Fletcher-Reeves
|
||||
{
|
||||
NonlinearConjugateGradientOptimizer optimizer(
|
||||
graph, initialEstimate, param, DirectionMethod::FletcherReeves);
|
||||
Values result = optimizer.optimize();
|
||||
|
||||
EXPECT_DOUBLES_EQUAL(0.0, graph.error(result), 1e-4);
|
||||
}
|
||||
// Polak-Ribiere
|
||||
{
|
||||
NonlinearConjugateGradientOptimizer optimizer(
|
||||
graph, initialEstimate, param, DirectionMethod::PolakRibiere);
|
||||
Values result = optimizer.optimize();
|
||||
|
||||
EXPECT_DOUBLES_EQUAL(0.0, graph.error(result), 1e-4);
|
||||
}
|
||||
// Hestenes-Stiefel
|
||||
{
|
||||
NonlinearConjugateGradientOptimizer optimizer(
|
||||
graph, initialEstimate, param, DirectionMethod::HestenesStiefel);
|
||||
Values result = optimizer.optimize();
|
||||
|
||||
EXPECT_DOUBLES_EQUAL(0.0, graph.error(result), 1e-4);
|
||||
}
|
||||
// Dai-Yuan
|
||||
{
|
||||
NonlinearConjugateGradientOptimizer optimizer(graph, initialEstimate, param,
|
||||
DirectionMethod::DaiYuan);
|
||||
Values result = optimizer.optimize();
|
||||
|
||||
EXPECT_DOUBLES_EQUAL(0.0, graph.error(result), 1e-4);
|
||||
}
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
|
|
Loading…
Reference in New Issue