adapt spcg to new optimization interface
parent
eaabbdf7cd
commit
3bb1f26916
|
@ -16,8 +16,8 @@ noinst_PROGRAMS += PlanarSLAMExample_easy # Solves SLAM example from tutorial
|
|||
noinst_PROGRAMS += PlanarSLAMSelfContained_advanced # Solves SLAM example from tutorial with all typedefs in the script
|
||||
noinst_PROGRAMS += Pose2SLAMExample_easy # Solves SLAM example from tutorial by using Pose2SLAM and easy optimization interface
|
||||
noinst_PROGRAMS += Pose2SLAMExample_advanced # Solves SLAM example from tutorial by using Pose2SLAM and advanced optimization interface
|
||||
#noinst_PROGRAMS += Pose2SLAMwSPCG_easy # Solves a simple Pose2 SLAM example with advanced SPCG solver
|
||||
#noinst_PROGRAMS += Pose2SLAMwSPCG_advanced # Solves a simple Pose2 SLAM example with easy SPCG solver
|
||||
noinst_PROGRAMS += Pose2SLAMwSPCG_easy # Solves a simple Pose2 SLAM example with advanced SPCG solver
|
||||
noinst_PROGRAMS += Pose2SLAMwSPCG_advanced # Solves a simple Pose2 SLAM example with easy SPCG solver
|
||||
#SUBDIRS = vSLAMexample # does not compile....
|
||||
#----------------------------------------------------------------------------------------------------
|
||||
# rules to build local programs
|
||||
|
|
|
@ -25,9 +25,16 @@ using namespace std;
|
|||
using namespace gtsam;
|
||||
using namespace pose2SLAM;
|
||||
|
||||
typedef boost::shared_ptr<Graph> sharedGraph;
|
||||
typedef boost::shared_ptr<Values> sharedValue;
|
||||
typedef NonlinearOptimizer<Graph, Values, SubgraphPreconditioner, SubgraphSolver<Graph,Values> > SPCGOptimizer;
|
||||
typedef boost::shared_ptr<Graph> sharedGraph ;
|
||||
typedef boost::shared_ptr<Values> sharedValue ;
|
||||
//typedef NonlinearOptimizer<Graph, Values, SubgraphPreconditioner, SubgraphSolver<Graph,Values> > SPCGOptimizer;
|
||||
|
||||
|
||||
typedef SubgraphSolver<Graph, GaussianFactorGraph, Values> Solver;
|
||||
|
||||
typedef boost::shared_ptr<Solver> sharedSolver ;
|
||||
|
||||
typedef NonlinearOptimizer<Graph, Values, GaussianFactorGraph, Solver> SPCGOptimizer;
|
||||
|
||||
sharedGraph graph;
|
||||
sharedValue initial;
|
||||
|
@ -44,8 +51,8 @@ int main(void) {
|
|||
graph->print("full graph") ;
|
||||
initial->print("initial estimate") ;
|
||||
|
||||
SPCGOptimizer::shared_solver solver(new SPCGOptimizer::solver(*graph, *initial)) ;
|
||||
SPCGOptimizer optimizer(graph, initial, solver) ;
|
||||
sharedSolver solver(new Solver(*graph, *initial)) ;
|
||||
SPCGOptimizer optimizer(graph, initial, solver->ordering(), solver) ;
|
||||
|
||||
cout << "before optimization, sum of error is " << optimizer.error() << endl;
|
||||
NonlinearOptimizationParameters parameter;
|
||||
|
|
|
@ -163,4 +163,34 @@ GaussianFactorGraph GaussianFactorGraph::add_priors(double sigma, const vector<s
|
|||
return result;
|
||||
}
|
||||
|
||||
bool GaussianFactorGraph::split(const std::map<Index, Index> &M, GaussianFactorGraph &Ab1, GaussianFactorGraph &Ab2) const {
|
||||
|
||||
typedef sharedFactor F ;
|
||||
|
||||
Ab1 = GaussianFactorGraph();
|
||||
Ab2 = GaussianFactorGraph();
|
||||
|
||||
BOOST_FOREACH(const F& factor, *this) {
|
||||
|
||||
if (factor->keys().size() > 2)
|
||||
throw(invalid_argument("split: only support factors with at most two keys"));
|
||||
if (factor->keys().size() == 1) {
|
||||
Ab1.push_back(factor);
|
||||
Ab2.push_back(factor);
|
||||
continue;
|
||||
}
|
||||
Index key1 = factor->keys_[0];
|
||||
Index key2 = factor->keys_[1];
|
||||
|
||||
if ((M.find(key1) != M.end() && M.find(key1)->second == key2) ||
|
||||
(M.find(key2) != M.end() && M.find(key2)->second == key1))
|
||||
Ab1.push_back(factor);
|
||||
else
|
||||
Ab2.push_back(factor);
|
||||
}
|
||||
|
||||
return true ;
|
||||
}
|
||||
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
@ -152,6 +152,13 @@ namespace gtsam {
|
|||
*/
|
||||
GaussianFactorGraph add_priors(double sigma, const std::vector<size_t>& dimensions) const;
|
||||
|
||||
|
||||
/**
|
||||
* Split a Gaussian factor graph into two, according to M
|
||||
* M keeps the vertex indices of edges of A1. The others belong to A2.
|
||||
*/
|
||||
bool split(const std::map<Index, Index> &M, GaussianFactorGraph &A1, GaussianFactorGraph &A2) const ;
|
||||
|
||||
};
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
@ -59,7 +59,7 @@ GaussianFactor::shared_ptr GaussianMultifrontalSolver::marginal(Index j) const {
|
|||
std::pair<Vector, Matrix> GaussianMultifrontalSolver::marginalStandard(Index j) const {
|
||||
GaussianConditional::shared_ptr conditional = Base::marginal(j)->eliminateFirst();
|
||||
Matrix R = conditional->get_R();
|
||||
return make_pair(conditional->get_d(), inverse(trans(R)*R));
|
||||
return make_pair(conditional->get_d(), inverse(prod(trans(R),R)));
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -75,7 +75,7 @@ GaussianFactor::shared_ptr GaussianSequentialSolver::marginal(Index j) const {
|
|||
std::pair<Vector, Matrix> GaussianSequentialSolver::marginalStandard(Index j) const {
|
||||
GaussianConditional::shared_ptr conditional = Base::marginal(j)->eliminateFirst();
|
||||
Matrix R = conditional->get_R();
|
||||
return make_pair(conditional->get_d(), inverse(trans(R)*R));
|
||||
return make_pair(conditional->get_d(), inverse(prod(trans(R),R)));
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -23,8 +23,8 @@ using namespace std;
|
|||
namespace gtsam {
|
||||
|
||||
/* ************************************************************************* */
|
||||
SubgraphPreconditioner::SubgraphPreconditioner(sharedFG& Ab1, sharedFG& Ab2,
|
||||
sharedBayesNet& Rc1, sharedValues& xbar) :
|
||||
SubgraphPreconditioner::SubgraphPreconditioner(const sharedFG& Ab1, const sharedFG& Ab2,
|
||||
const sharedBayesNet& Rc1, const sharedValues& xbar) :
|
||||
Ab1_(Ab1), Ab2_(Ab2), Rc1_(Rc1), xbar_(xbar), b2bar_(Ab2_->errors_(*xbar)) {
|
||||
}
|
||||
|
||||
|
@ -50,8 +50,6 @@ namespace gtsam {
|
|||
/* ************************************************************************* */
|
||||
double SubgraphPreconditioner::error(const VectorValues& y) const {
|
||||
|
||||
|
||||
|
||||
Errors e(y);
|
||||
VectorValues x = this->x(y);
|
||||
Errors e2 = Ab2_->errors(x);
|
||||
|
|
|
@ -46,6 +46,7 @@ namespace gtsam {
|
|||
|
||||
public:
|
||||
|
||||
SubgraphPreconditioner();
|
||||
/**
|
||||
* Constructor
|
||||
* @param Ab1: the Graph A1*x=b1
|
||||
|
@ -53,7 +54,7 @@ namespace gtsam {
|
|||
* @param Rc1: the Bayes Net R1*x=c1
|
||||
* @param xbar: the solution to R1*x=c1
|
||||
*/
|
||||
SubgraphPreconditioner(sharedFG& Ab1, sharedFG& Ab2, sharedBayesNet& Rc1, sharedValues& xbar);
|
||||
SubgraphPreconditioner(const sharedFG& Ab1, const sharedFG& Ab2, const sharedBayesNet& Rc1, const sharedValues& xbar);
|
||||
|
||||
|
||||
/**
|
||||
|
|
|
@ -19,75 +19,8 @@
|
|||
|
||||
#pragma once
|
||||
|
||||
#include <boost/tuple/tuple.hpp>
|
||||
#include <gtsam/linear/SubgraphSolver.h>
|
||||
#include <gtsam/linear/iterative-inl.h>
|
||||
#include <gtsam/inference/graph-inl.h>
|
||||
#include <gtsam/inference/FactorGraph-inl.h>
|
||||
#include <gtsam/inference/EliminationTree-inl.h>
|
||||
|
||||
using namespace std;
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class GRAPH, class VALUES>
|
||||
SubgraphSolver<GRAPH, VALUES>::SubgraphSolver(const GRAPH& G, const VALUES& theta0) {
|
||||
initialize(G,theta0);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class GRAPH, class VALUES>
|
||||
void SubgraphSolver<GRAPH, VALUES>::initialize(const GRAPH& G, const VALUES& theta0) {
|
||||
|
||||
// generate spanning tree
|
||||
PredecessorMap<Key> tree = gtsam::findMinimumSpanningTree<GRAPH, Key, Constraint>(G);
|
||||
|
||||
// split the graph
|
||||
if (verbose_) cout << "generating spanning tree and split the graph ...";
|
||||
gtsam::split<GRAPH,Key,Constraint>(G, tree, T_, C_) ;
|
||||
if (verbose_) cout << ",with " << T_.size() << " and " << C_.size() << " factors" << endl;
|
||||
|
||||
// make the ordering
|
||||
list<Key> keys = predecessorMap2Keys(tree);
|
||||
ordering_ = boost::shared_ptr<Ordering>(new Ordering(list<Symbol>(keys.begin(), keys.end())));
|
||||
|
||||
// Add a HardConstraint to the root, otherwise the root will be singular
|
||||
Key root = keys.back();
|
||||
T_.addHardConstraint(root, theta0[root]);
|
||||
|
||||
// compose the approximate solution
|
||||
theta_bar_ = composePoses<GRAPH, Constraint, Pose, VALUES> (T_, tree, theta0[root]);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class GRAPH, class VALUES>
|
||||
boost::shared_ptr<SubgraphPreconditioner> SubgraphSolver<GRAPH, VALUES>::linearize(const GRAPH& G, const VALUES& theta_bar) const {
|
||||
SubgraphPreconditioner::sharedFG Ab1 = T_.linearize(theta_bar, *ordering_);
|
||||
SubgraphPreconditioner::sharedFG Ab2 = C_.linearize(theta_bar, *ordering_);
|
||||
#ifdef TIMING
|
||||
SubgraphPreconditioner::sharedBayesNet Rc1;
|
||||
SubgraphPreconditioner::sharedValues xbar;
|
||||
#else
|
||||
GaussianFactorGraph sacrificialAb1 = *Ab1; // duplicate !!!!!
|
||||
SubgraphPreconditioner::sharedBayesNet Rc1 = EliminationTree<GaussianFactor>::Create(sacrificialAb1)->eliminate();
|
||||
SubgraphPreconditioner::sharedValues xbar = gtsam::optimize_(*Rc1);
|
||||
#endif
|
||||
// TODO: there does not seem to be a good reason to have Ab1_
|
||||
// It seems only be used to provide an ordering for creating sparse matrices
|
||||
return boost::shared_ptr<SubgraphPreconditioner>(new SubgraphPreconditioner(Ab1, Ab2, Rc1, xbar));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class GRAPH, class VALUES>
|
||||
VectorValues SubgraphSolver<GRAPH, VALUES>::optimize(SubgraphPreconditioner& system) const {
|
||||
VectorValues zeros = system.zero();
|
||||
|
||||
// Solve the subgraph PCG
|
||||
VectorValues ybar = conjugateGradients<SubgraphPreconditioner, VectorValues,
|
||||
Errors> (system, zeros, verbose_, epsilon_, epsilon_abs_, maxIterations_);
|
||||
VectorValues xbar = system.x(ybar);
|
||||
return xbar;
|
||||
}
|
||||
|
||||
}
|
||||
namespace gtsam {}
|
||||
|
|
|
@ -9,17 +9,19 @@
|
|||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/*
|
||||
* SubgraphSolver.h
|
||||
* Created on: Dec 31, 2009
|
||||
* @author: Frank Dellaert
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <boost/foreach.hpp>
|
||||
#include <boost/tuple/tuple.hpp>
|
||||
#include <boost/shared_ptr.hpp>
|
||||
#include <boost/make_shared.hpp>
|
||||
|
||||
#include <gtsam/inference/EliminationTree-inl.h>
|
||||
#include <gtsam/linear/iterative-inl.h>
|
||||
#include <gtsam/linear/GaussianFactorGraph.h>
|
||||
#include <gtsam/linear/GaussianBayesNet.h>
|
||||
#include <gtsam/linear/SubgraphPreconditioner.h>
|
||||
#include <gtsam/nonlinear/Key.h>
|
||||
#include <gtsam/nonlinear/Ordering.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
@ -30,13 +32,21 @@ namespace gtsam {
|
|||
* linearize: G * T -> L
|
||||
* solve : L -> VectorValues
|
||||
*/
|
||||
template<class GRAPH, class VALUES>
|
||||
template<class GRAPH, class LINEAR, class VALUES>
|
||||
class SubgraphSolver {
|
||||
|
||||
private:
|
||||
typedef typename VALUES::Key Key;
|
||||
typedef typename GRAPH::Constraint Constraint;
|
||||
typedef typename GRAPH::Pose Pose;
|
||||
typedef typename GRAPH::Constraint Constraint;
|
||||
|
||||
typedef boost::shared_ptr<const SubgraphSolver> shared_ptr ;
|
||||
typedef boost::shared_ptr<Ordering> shared_ordering ;
|
||||
typedef boost::shared_ptr<GRAPH> shared_graph ;
|
||||
typedef boost::shared_ptr<LINEAR> shared_linear ;
|
||||
typedef boost::shared_ptr<VALUES> shared_values ;
|
||||
typedef boost::shared_ptr<SubgraphPreconditioner> shared_preconditioner ;
|
||||
typedef std::map<Index,Index> mapPairIndex ;
|
||||
|
||||
// TODO not hardcode
|
||||
static const size_t maxIterations_=100;
|
||||
|
@ -44,50 +54,95 @@ namespace gtsam {
|
|||
static const bool verbose_=true;
|
||||
|
||||
/* the ordering derived from the spanning tree */
|
||||
boost::shared_ptr<Ordering> ordering_;
|
||||
shared_ordering ordering_;
|
||||
|
||||
/* the solution computed from the first subgraph */
|
||||
boost::shared_ptr<VALUES> theta_bar_;
|
||||
/* the indice of two vertices in the gaussian factor graph */
|
||||
mapPairIndex pairs_;
|
||||
|
||||
GRAPH T_, C_;
|
||||
/* preconditioner */
|
||||
shared_preconditioner pc_;
|
||||
|
||||
public:
|
||||
SubgraphSolver() {}
|
||||
SubgraphSolver(){}
|
||||
|
||||
SubgraphSolver(const GRAPH& G, const VALUES& theta0);
|
||||
SubgraphSolver(const LINEAR &GFG) {
|
||||
throw std::runtime_error("SubgraphSolver: gaussian factor graph initialization not supported");
|
||||
}
|
||||
|
||||
void initialize(const GRAPH& G, const VALUES& theta0);
|
||||
SubgraphSolver(const SubgraphSolver& solver) :
|
||||
ordering_(solver.ordering_), pairs_(solver.pairs_), pc_(solver.pc_){}
|
||||
|
||||
boost::shared_ptr<Ordering> ordering() const { return ordering_; }
|
||||
|
||||
boost::shared_ptr<VALUES> theta_bar() const { return theta_bar_; }
|
||||
|
||||
/**
|
||||
* linearize the non-linear graph around the current config and build the subgraph preconditioner systme
|
||||
*/
|
||||
boost::shared_ptr<SubgraphPreconditioner> linearize(const GRAPH& G, const VALUES& theta_bar) const;
|
||||
SubgraphSolver(shared_ordering ordering,
|
||||
mapPairIndex pairs,
|
||||
shared_preconditioner pc) :
|
||||
ordering_(ordering), pairs_(pairs), pc_(pc) {}
|
||||
|
||||
|
||||
/**
|
||||
* solve for the optimal displacement in the tangent space, and then solve
|
||||
* the resulted linear system
|
||||
*/
|
||||
VectorValues optimize(SubgraphPreconditioner& system) const;
|
||||
SubgraphSolver(const GRAPH& G, const VALUES& theta0) { initialize(G,theta0); }
|
||||
|
||||
boost::shared_ptr<SubgraphSolver> prepareLinear(const SubgraphPreconditioner& fg) const {
|
||||
return boost::shared_ptr<SubgraphSolver>(new SubgraphSolver(*this));
|
||||
shared_ptr update(const LINEAR &graph) const {
|
||||
|
||||
shared_linear Ab1 = boost::make_shared<LINEAR>(),
|
||||
Ab2 = boost::make_shared<LINEAR>();
|
||||
|
||||
if (verbose_) cout << "split the graph ...";
|
||||
graph.split(pairs_, *Ab1, *Ab2) ;
|
||||
if (verbose_) cout << ",with " << Ab1->size() << " and " << Ab2->size() << " factors" << endl;
|
||||
|
||||
// // Add a HardConstra int to the root, otherwise the root will be singular
|
||||
// Key root = keys.back();
|
||||
// T_.addHardConstraint(root, theta0[root]);
|
||||
//
|
||||
// // compose the approximate solution
|
||||
// theta_bar_ = composePoses<GRAPH, Constraint, Pose, Values> (T_, tree, theta0[root]);
|
||||
|
||||
LINEAR sacrificialAb1 = *Ab1; // duplicate !!!!!
|
||||
SubgraphPreconditioner::sharedBayesNet Rc1 = EliminationTree<GaussianFactor>::Create(sacrificialAb1)->eliminate();
|
||||
SubgraphPreconditioner::sharedValues xbar = gtsam::optimize_(*Rc1);
|
||||
|
||||
shared_preconditioner pc = boost::make_shared<SubgraphPreconditioner>(Ab1,Ab2,Rc1,xbar);
|
||||
return boost::make_shared<SubgraphSolver>(ordering_, pairs_, pc) ;
|
||||
}
|
||||
|
||||
VectorValues::shared_ptr optimize() const {
|
||||
|
||||
// preconditioned conjugate gradient
|
||||
VectorValues zeros = pc_->zero();
|
||||
VectorValues ybar = conjugateGradients<SubgraphPreconditioner, VectorValues,
|
||||
Errors> (*pc_, zeros, verbose_, epsilon_, epsilon_abs_, maxIterations_);
|
||||
|
||||
boost::shared_ptr<VectorValues> xbar = boost::make_shared<VectorValues>() ;
|
||||
*xbar = pc_->x(ybar);
|
||||
return xbar;
|
||||
}
|
||||
|
||||
shared_ordering ordering() const { return ordering_; }
|
||||
|
||||
protected:
|
||||
|
||||
void initialize(const GRAPH& G, const VALUES& theta0) {
|
||||
// generate spanning tree
|
||||
PredecessorMap<Key> tree_ = gtsam::findMinimumSpanningTree<GRAPH, Key, Constraint>(G);
|
||||
|
||||
// make the ordering
|
||||
list<Key> keys = predecessorMap2Keys(tree_);
|
||||
ordering_ = boost::make_shared<Ordering>(list<Symbol>(keys.begin(), keys.end()));
|
||||
|
||||
// build factor pairs
|
||||
pairs_.clear();
|
||||
typedef pair<Key,Key> EG ;
|
||||
BOOST_FOREACH( const EG &eg, tree_ ) {
|
||||
Symbol key1 = Symbol(eg.first),
|
||||
key2 = Symbol(eg.second) ;
|
||||
pairs_.insert(pair<Index, Index>((*ordering_)[key1], (*ordering_)[key2])) ;
|
||||
}
|
||||
}
|
||||
|
||||
/** expmap the Values given the stored Ordering */
|
||||
VALUES expmap(const VALUES& config, const VectorValues& delta) const {
|
||||
return config.expmap(delta, *ordering_);
|
||||
}
|
||||
};
|
||||
|
||||
template<class GRAPH, class VALUES> const size_t SubgraphSolver<GRAPH,VALUES>::maxIterations_;
|
||||
template<class GRAPH, class VALUES> const bool SubgraphSolver<GRAPH,VALUES>::verbose_;
|
||||
template<class GRAPH, class VALUES> const double SubgraphSolver<GRAPH,VALUES>::epsilon_;
|
||||
template<class GRAPH, class VALUES> const double SubgraphSolver<GRAPH,VALUES>::epsilon_abs_;
|
||||
template<class GRAPH, class LINEAR, class VALUES> const size_t SubgraphSolver<GRAPH, LINEAR, VALUES>::maxIterations_;
|
||||
template<class GRAPH, class LINEAR, class VALUES> const bool SubgraphSolver<GRAPH, LINEAR, VALUES>::verbose_;
|
||||
template<class GRAPH, class LINEAR, class VALUES> const double SubgraphSolver<GRAPH, LINEAR, VALUES>::epsilon_;
|
||||
template<class GRAPH, class LINEAR, class VALUES> const double SubgraphSolver<GRAPH, LINEAR, VALUES>::epsilon_abs_;
|
||||
|
||||
} // nsamespace gtsam
|
||||
|
|
|
@ -67,24 +67,27 @@ namespace gtsam {
|
|||
return *result.values();
|
||||
}
|
||||
|
||||
// /**
|
||||
// * The sparse preconditioned conjucate gradient solver
|
||||
// */
|
||||
// template<class G, class T>
|
||||
// T optimizeSPCG(const G& graph, const T& initialEstimate, const NonlinearOptimizationParameters& parameters = NonlinearOptimizationParameters()) {
|
||||
//
|
||||
// // initial optimization state is the same in both cases tested
|
||||
// typedef NonlinearOptimizer<G, T, SubgraphPreconditioner, SubgraphSolver<G,T> > SPCGOptimizer;
|
||||
// typename SPCGOptimizer::shared_solver solver(new SubgraphSolver<G,T>(graph, initialEstimate));
|
||||
// SPCGOptimizer optimizer(
|
||||
// boost::make_shared<const G>(graph),
|
||||
// boost::make_shared<const T>(initialEstimate),
|
||||
// solver);
|
||||
//
|
||||
// // Levenberg-Marquardt
|
||||
// SPCGOptimizer result = optimizer.levenbergMarquardt(parameters);
|
||||
// return *result.values();
|
||||
// }
|
||||
/**
|
||||
* The sparse preconditioned conjucate gradient solver
|
||||
*/
|
||||
template<class G, class T>
|
||||
T optimizeSPCG(const G& graph, const T& initialEstimate, const NonlinearOptimizationParameters& parameters = NonlinearOptimizationParameters()) {
|
||||
|
||||
// initial optimization state is the same in both cases tested
|
||||
typedef SubgraphSolver<G,GaussianFactorGraph,T> Solver;
|
||||
typedef boost::shared_ptr<Solver> shared_Solver;
|
||||
typedef NonlinearOptimizer<G, T, GaussianFactorGraph, Solver> SPCGOptimizer;
|
||||
shared_Solver solver = boost::make_shared<Solver>(graph, initialEstimate);
|
||||
SPCGOptimizer optimizer(
|
||||
boost::make_shared<const G>(graph),
|
||||
boost::make_shared<const T>(initialEstimate),
|
||||
solver->ordering(),
|
||||
solver);
|
||||
|
||||
// Levenberg-Marquardt
|
||||
SPCGOptimizer result = optimizer.levenbergMarquardt(parameters);
|
||||
return *result.values();
|
||||
}
|
||||
|
||||
/**
|
||||
* optimization that returns the values
|
||||
|
|
|
@ -85,6 +85,24 @@ namespace gtsam {
|
|||
"NonlinearOptimizer constructor: ordering = NULL");
|
||||
}
|
||||
|
||||
template<class G, class C, class L, class S, class W>
|
||||
NonlinearOptimizer<G, C, L, S, W>::NonlinearOptimizer(
|
||||
shared_graph graph, shared_values values, shared_ordering ordering, shared_solver solver, const double lambda):
|
||||
graph_(graph), values_(values), error_(graph->error(*values)), ordering_(ordering), solver_(solver),
|
||||
lambda_(lambda), dimensions_(new vector<size_t>(values->dims(*ordering))) {
|
||||
if (!graph) throw std::invalid_argument(
|
||||
"NonlinearOptimizer constructor: graph = NULL");
|
||||
if (!values) throw std::invalid_argument(
|
||||
"NonlinearOptimizer constructor: values = NULL");
|
||||
if (!ordering) throw std::invalid_argument(
|
||||
"NonlinearOptimizer constructor: ordering = NULL");
|
||||
if (!solver) throw std::invalid_argument(
|
||||
"NonlinearOptimizer constructor: solver = NULL");
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/* ************************************************************************* */
|
||||
// linearize and optimize
|
||||
/* ************************************************************************* */
|
||||
|
|
|
@ -130,6 +130,13 @@ namespace gtsam {
|
|||
NonlinearOptimizer(shared_graph graph, shared_values values, shared_ordering ordering,
|
||||
const double lambda = 1e-5);
|
||||
|
||||
NonlinearOptimizer(shared_graph graph,
|
||||
shared_values values,
|
||||
shared_ordering ordering,
|
||||
shared_solver solver,
|
||||
const double lambda = 1e-5);
|
||||
|
||||
|
||||
/**
|
||||
* Copy constructor
|
||||
*/
|
||||
|
|
Loading…
Reference in New Issue