add in a COLAMD vs METIS exmaple
parent
8d89529c98
commit
3b1c6b1b1e
|
@ -0,0 +1,145 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file SFMExample.cpp
|
||||
* @brief This file is to compare the ordering performance for COLAMD vs METIS.
|
||||
* Example problem is to solve a structure-from-motion problem from a "Bundle Adjustment in the Large" file.
|
||||
* @author Frank Dellaert, Zhaoyang Lv
|
||||
*/
|
||||
|
||||
// For an explanation of headers, see SFMExample.cpp
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
#include <gtsam/slam/GeneralSFMFactor.h>
|
||||
#include <gtsam/slam/dataset.h> // for loading BAL datasets !
|
||||
#include <vector>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
using symbol_shorthand::C;
|
||||
using symbol_shorthand::P;
|
||||
|
||||
// We will be using a projection factor that ties a SFM_Camera to a 3D point.
|
||||
// An SFM_Camera is defined in datase.h as a camera with unknown Cal3Bundler calibration
|
||||
// and has a total of 9 free parameters
|
||||
typedef GeneralSFMFactor<SfM_Camera,Point3> MyFactor;
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main (int argc, char* argv[]) {
|
||||
|
||||
// Find default file, but if an argument is given, try loading a file
|
||||
string filename = findExampleDataFile("dubrovnik-3-7-pre");
|
||||
if (argc>1) filename = string(argv[1]);
|
||||
|
||||
// Load the SfM data from file
|
||||
SfM_data mydata;
|
||||
readBAL(filename, mydata);
|
||||
cout << boost::format("read %1% tracks on %2% cameras\n") % mydata.number_tracks() % mydata.number_cameras();
|
||||
|
||||
// Create a factor graph
|
||||
NonlinearFactorGraph graph;
|
||||
|
||||
// We share *one* noiseModel between all projection factors
|
||||
noiseModel::Isotropic::shared_ptr noise =
|
||||
noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v
|
||||
|
||||
// Add measurements to the factor graph
|
||||
size_t j = 0;
|
||||
BOOST_FOREACH(const SfM_Track& track, mydata.tracks) {
|
||||
BOOST_FOREACH(const SfM_Measurement& m, track.measurements) {
|
||||
size_t i = m.first;
|
||||
Point2 uv = m.second;
|
||||
graph.push_back(MyFactor(uv, noise, C(i), P(j))); // note use of shorthand symbols C and P
|
||||
}
|
||||
j += 1;
|
||||
}
|
||||
|
||||
// Add a prior on pose x1. This indirectly specifies where the origin is.
|
||||
// and a prior on the position of the first landmark to fix the scale
|
||||
graph.push_back(PriorFactor<SfM_Camera>(C(0), mydata.cameras[0], noiseModel::Isotropic::Sigma(9, 0.1)));
|
||||
graph.push_back(PriorFactor<Point3> (P(0), mydata.tracks[0].p, noiseModel::Isotropic::Sigma(3, 0.1)));
|
||||
|
||||
// Create initial estimate
|
||||
Values initial;
|
||||
size_t i = 0; j = 0;
|
||||
BOOST_FOREACH(const SfM_Camera& camera, mydata.cameras) initial.insert(C(i++), camera);
|
||||
BOOST_FOREACH(const SfM_Track& track, mydata.tracks) initial.insert(P(j++), track.p);
|
||||
|
||||
/** ---------------------------------------------------**/
|
||||
|
||||
/* With COLAMD, optimize the graph and print the results */
|
||||
cout << "Optimize with COLAMD..." << endl;
|
||||
|
||||
Values result_COLAMD;
|
||||
try {
|
||||
double tic_t = clock();
|
||||
|
||||
LevenbergMarquardtParams params_using_COLAMD;
|
||||
params_using_COLAMD.setVerbosity("ERROR");
|
||||
params_using_COLAMD.ordering = Ordering::Create(Ordering::COLAMD, graph);
|
||||
|
||||
double toc_t = (clock() - tic_t)/CLOCKS_PER_SEC;
|
||||
|
||||
tic_t = clock();
|
||||
|
||||
LevenbergMarquardtOptimizer lm(graph, initial, params_using_COLAMD);
|
||||
result_COLAMD = lm.optimize();
|
||||
|
||||
tic_t = clock();
|
||||
|
||||
cout << "Ordering: " << toc_t << "seconds" << endl;
|
||||
cout << "Solving: " << (clock() - tic_t)/CLOCKS_PER_SEC << "seconds" << endl;
|
||||
|
||||
} catch (exception& e) {
|
||||
cout << e.what();
|
||||
}
|
||||
|
||||
// To see the error, check SFMExample_bal.cpp file
|
||||
//cout << "final error: " << graph.error(result_COLAMD) << endl;
|
||||
|
||||
/** ---------------------------------------------------**/
|
||||
|
||||
/* with METIS, optimize the graph and print the results */
|
||||
cout << "Optimize with METIS" << endl;
|
||||
|
||||
Values results_METIS;
|
||||
try {
|
||||
double tic_t = clock();
|
||||
|
||||
LevenbergMarquardtParams params_using_METIS;
|
||||
params_using_METIS.setVerbosity("ERROR");
|
||||
params_using_METIS.ordering = Ordering::Create(Ordering::METIS, graph);
|
||||
|
||||
double toc_t = (clock() - tic_t)/CLOCKS_PER_SEC;
|
||||
|
||||
tic_t = clock();
|
||||
|
||||
LevenbergMarquardtOptimizer lm(graph, initial, params_using_METIS);
|
||||
results_METIS = lm.optimize();
|
||||
|
||||
tic_t = clock();
|
||||
|
||||
cout << "Ordering: " << toc_t << "seconds" << endl;
|
||||
cout << "Solving: " << (clock() - tic_t)/CLOCKS_PER_SEC << "seconds" << endl;
|
||||
|
||||
} catch (exception& e) {
|
||||
cout << e.what();
|
||||
}
|
||||
|
||||
|
||||
|
||||
return 0;
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
|
Loading…
Reference in New Issue